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Abstract

The presented thesis focuses on coupled hydraulic-mechanical processes in clay materials. In
the framework of high–level radioactive waste disposal clay materials are of special interest
in the near as well as in the far field. On the one side they are utilized e.g. as a part of
engineered barrier systems composed of bentonite–sand–mixtures. On the other side, claystone
is discussed to be a potential host rock for final repositories.

The work at hand uses the existing finite element program RockFlow to investigate possible
migration processes in clay materials. That code contains classical hydraulic-mechanical cou-
plings like the incorporation of stress-induced strains in the mass balance of the fluid as well as
the application of Terzaghi‘ s effective stresses and the saturation dependent parameters in the
non linear material formulation. Based on this, extensions of the existing code are presented in
this work. They focus on the development of concepts and algorithms concerning clay related
processes.

Clay materials imply effects like swelling and shrinkage. In addition to classical mechanical
deformations the swelling and shrinkage affect the porosity and furthermore the permeability
of the material. As the clay material usually comprises very low porosities, already a reduction
of the pore space due to geometric linear deformations lead to non linear material behavior
if the solid grains are assumed to be incompressible. Consequently, a non linear elastic com-
pressibility model that pictures the behavior due to compaction converging to the compression
point is presented and implemented. The incorporation of initial stresses as well as initially
reduced porosities is facilitated in the model due to a differentiation between initial and stress
free porosity. Furthermore, clay materials imply pressure sensitive, strain–hardening plastic
behavior. An elasto–plastic material model of the Cam–Clay type is incorporated in the finite
element formulation. Finally, the applicability of the code is presented due to various examples
and the impact of the presented mechanical extensions on the hydraulic process is investigated.

Keywords: finite elements, coupled hydraulic–mechanical processes, clay materials, elasto–
plasticity of the Cam–Clay type, non linear elastic compressibility, strain dependent porosity,
strain dependent permeability, swelling and shrinkage



Zusammenfassung

Diese vorliegende Schrift beschäftigt sich mit hydraulisch–mechanisch gekoppelten Prozessen
in Tonmaterialien. Im Bereich der Endlagerung hochradioaktiver Abfälle sind Tonmaterialien
sowohl im Nah- als auch im Fernbereich von besonderer Bedeutung. Im Nahbereich können sie
zur Optimierung des technischen Barrieresystems verwendet werden, das z.B. aus Bentonit–
Sand–Gemischen bestehen kann. Im Fernfeld wird Tonstein als potentielles Wirtsgestein zur
Lagerung in geologisch großen Tiefen diskutiert.

Zur Untersuchung von Migrationsprozessen in Tonmaterialien wird in dieser Arbeit das Pro-
gramm RockFlow benutzt, das auf der Methode der finiten Elemente basiert. In diesem
Programm sind die klassischen hydraulisch–mechanischen Kopplungsmechanismen wie die Ein-
beziehung der Dehnungen in die Massenbilanz, Terzaghi‘ s effektive Spannungen sowie sätti-
gungsabhängige Materialparameter berücksichtigt. Darauf basierend werden Weiterentwick-
lungen des Programms RockFlow hinsichtlich von Konzepten und Algorithmen zur Behandlung
tonspezifischer Prozesse vorgestellt.

Tonmaterialien beinhalten Effekte wie Quellen und Schrumpfen. In Kombination mit den
klassischen mechanischen Deformationen beeinflussen diese die Porositäten und weiterhin die
Permeabilitäten des Materials. Zusätzlich besitzen Tonmaterialien in der Regel sehr geringe
Porositäten. Folglich kann schon eine geringfügige Komprimierung des Materials, die üblicher-
weise der geometrisch linearen Theorie zugeordnet werden kann, zu nichtlinearem Materi-
alverhalten führen, wenn die einzelnen Körner als inkompressibel angenommen werden. Ein
nichtlineares elastisches Materialmodell, das das Kompaktionsverhalten von Material bis zum
Kompressionspunkt abbildet, wird in dieser Arbeit vorgestellt. Mit Hilfe der Unterscheidung
zwischen anfänglichen und spannungsfreien Porositäten ermöglicht dieses Modell die Berück-
sichtigung von Anfangszuständen. Ein weiterer wichtiger Aspekt der Modellierung ist elasto-
plastisches Materialverhalten. Tone zeigen Verfestigungs– sowie Entfestigungsverhalten und
reagieren auch auf rein hydrostatische Belastungen mit plastischen Dehnungen. Diese Eigen-
schaften werden mit Hilfe eines plastischen Modells vom Typ der Cam–Clay Modelle abge-
bildet. Schließlich wird die Anwendbarkeit des entwickelten Programms anhand verschiedener
Beispiele gezeigt und die Einflüsse der genannten mechanischen Prozesse auf den hydraulischen
Prozess untersucht.

Schlagworte: Finite Elemente, gekoppelte hydraulisch–mechanische Prozesse, tonhaltige Ma-
terialien, Elasto–plastizität im Rahmen der Cam–Clay Modelle, nichtlineare elastische Kom-
pressibilität, dehnungsabhängige Porosität, dehnungsabhängige Permeabilität, Quellen und
Schrumpfen
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wenn ich zu arbeiten hatte oder in der Uni Termine anstanden. Ihr beiden, dafür bin ich euch
sehr dankbar.



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Numerical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Theoretical background 7

2.1 Theory of porous media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Theory of mixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Concept of volume fractions . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Kinematical relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Initial and current configuration . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Deformation gradient . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Strain tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.4 Linearization of the strain tensor . . . . . . . . . . . . . . . . . . . . 13

2.2.5 Stress tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Balance relations of the mixture . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Conservation of mass . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Conservation of linear momentum . . . . . . . . . . . . . . . . . . . . 16

2.3.3 Conservation of angular momentum . . . . . . . . . . . . . . . . . . . 17

2.3.4 Conservation of energy . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.5 Entropy inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Constitutive equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Linear elastic, isotropic material model . . . . . . . . . . . . . . . . . 19

2.4.2 Effective stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.3 Linear swelling model . . . . . . . . . . . . . . . . . . . . . . . . . . 21

i



ii CONTENTS

2.4.4 Strain dependent porosity . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.5 Darcy´s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.6 Definition of a relative permeability . . . . . . . . . . . . . . . . . . . 23

2.4.7 Richards‘ approximation . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 The mathematical point of view . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.1 Partial differential equations . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.2 Mathematical formulation of the classical boundary value problem (BVP) 26

2.5.3 The weak form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.4 Investigating the weak form . . . . . . . . . . . . . . . . . . . . . . . 28

3 A non linear elastic compressibility model 31

3.1 General derivation of constitutive material models . . . . . . . . . . . . . . . 31

3.2 Linear elastic, compressible material . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Non linear elastic, compressible material . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Physical background and relating definitions . . . . . . . . . . . . . . 34

3.3.2 Theoretical background of the non linear compressibility model for the
geometric linear case . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.3 Requirements on the strain energy function . . . . . . . . . . . . . . . 39

3.3.4 Review of further physical requirements on the material matrix . . . . 40

3.3.5 Validation due to the comparison with experimental data found in the
literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.6 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Elasto-plasticity with respect to clay modeling 49

4.1 Historical review of plastic material modeling . . . . . . . . . . . . . . . . . . 49

4.2 Variable yield surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 Hardening and softening . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.2 Dependency of the yield criterion on the pore volume . . . . . . . . . 54

4.2.3 Dependency of the yield function on the saturation . . . . . . . . . . . 55

4.3 Theoretical background of elasto-plastic material modeling . . . . . . . . . . . 56

4.3.1 Return mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.2 Loading and unloading conditions . . . . . . . . . . . . . . . . . . . . 57

4.4 A plastic model of the Cam-Clay type . . . . . . . . . . . . . . . . . . . . . . 58

4.4.1 Basic equations of the proposed modified Cam-Clay model . . . . . . . 58

4.4.2 Algorithmic formulation of the Cam-Clay model . . . . . . . . . . . . 61

4.4.3 Algorithmic consistent elasto-plastic tangent . . . . . . . . . . . . . . 65



CONTENTS iii

5 Numerical Solution 67

5.1 The Finite Element Method (FEM) . . . . . . . . . . . . . . . . . . . . . . . 67

5.1.1 Idea and concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1.2 Spatial discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1.3 Temporal discretization . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1.4 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Weak formulation of the coupled problem . . . . . . . . . . . . . . . . . . . . 70

5.2.1 Mechanical subproblem . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.2 Hydraulic subproblem . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Usage of the FEM for the coupled problem . . . . . . . . . . . . . . . . . . . 72

5.3.1 Mechanical subproblem . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.2 Hydraulic subproblem . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.3 Temporal discretization . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.4 Formulation of a coupled hydraulic–mechanical problem for
the numerical solution by the FEM . . . . . . . . . . . . . . . . . . . 75

5.4 Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4.1 Newton-Raphson iteration . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4.2 Picard iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5 The finite element code RockFlow . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Applications 81

6.1 Step-wise compression test . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1.1 Model setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 Step-wise compression of a preloaded sample . . . . . . . . . . . . . . . . . . 88

6.2.1 Model setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3 Foundation problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3.1 Model setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4 Hardening and softening behavior found in a triaxial test . . . . . . . . . . . . 94

6.4.1 Model setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.5 Deformation induced strain dependent permeability . . . . . . . . . . . . . . . 97



iv CONTENTS

6.5.1 Model setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.6 Strain dependent permeability due to swelling and shrinkage . . . . . . . . . . 102

6.6.1 Model setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.7 Migration test in a bentonite-sand-mixture (
”
TDR experiment“) . . . . . . . . 107

6.7.1 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.7.2 Model setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.7.3 Material properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.7.4 Investigating the impact of various processes . . . . . . . . . . . . . . 112

6.7.5 Simulation of the TDR-test . . . . . . . . . . . . . . . . . . . . . . . 113

6.7.6 Additional effect due to higher permeabilities in the upper part . . . . 117

6.7.7 Discussion of the results . . . . . . . . . . . . . . . . . . . . . . . . . 119

7 Conclusion 121

A Basic notations and definitions 125

A.1 Voigt Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.2 Definition of the fourth order identity tensor I . . . . . . . . . . . . . . . . . 125

A.3 Definition of the second order identity tensor 1 . . . . . . . . . . . . . . . . . 126

A.4 Euclidic norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A.5 Neumann number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A.6 Definition of the p-q-plane in the principal stress space . . . . . . . . . . . . . 127

A.7 The Euclidean space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A.8 The Lebesgue integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Bibliography 129



Chapter 1

Introduction

1.1 Motivation

In the last years political as well as phenomenological publications illustrate the public and
the scientific interest on storage techniques for high radioactive waste. This kind of waste is
planned to be stored in high geological depths. In this framework a lot of research has been
carried out over the last decades to simulate the effects in salt or in granite. During the last
years, claystone has become more and more interesting as a potential host rock. It provides a
low permeability, which is one of the most important properties of the potential host rock for
a final repository.

In addition to the natural geological barrier proposed by the disposal in high depths, a so-called
engineered barrier system (EBS) is situated in the near-field of the radioactive waste. The EBS
may itself comprise a variety of sub-systems or components, such as the waste form, canister,
buffer, backfill, seals and plugs. There exist various approaches for such a system, but many
of them include the usage of a clay material like bentonite, often mixed with sand. This
kind of material assures the general requirements on materials for backfilling: lower hydraulic
conductivity than the surrounding rock, exertion of a swelling pressure that prevents rock fall,
capability for placement even under the condition of significant water inflow and a rational
placement (please refer to (Pusch & Yong, 2006)).

The related physical problems in the near- as well as in the far-field of the repository are char-
acterized by the appearance of manifold interacting processes namely mechanical, hydraulic,
thermal, chemical and biological ones which have a varying impact on the problem (please refer
to (Kolditz, 1996), (Kolditz, 2002) or (Stephansson, Jing, & Tsang, 1996) amongst others).

1.2 Approach

The development of a mathematical model representing the physical problem in a comprehen-
sive way requires the consideration of various aspects:

1



2 CHAPTER 1. INTRODUCTION

• type of material

• scale of time

• scale of space

• relevant processes

• interaction of the processes

• physical model approach

• publicity of the material properties

• numerical solvability

• evaluation of the results with respect to the problem description

Simulating the proposed problems the physical model should imply material parameters which
are available in most of the cases. Within this context it has to be kept in mind, that geotech-
nical applications often include non-homogeneous materials, which have to be homogenized
and incorporate varying material properties. The available properties are derived from field as
well as laboratory tests and are often not very precise. Additionally, the physical model should
be concise and mathematically solvable with reasonable amount. As the computational costs
increase rapidly with the number of processes and the degree of coupling, the model should be
restricted to the most important aspects of the specific problem. Within this work, the focus
is put on hydraulic-mechanical problems.

Figure 1.1 gives an overview of the hydraulic as well as the mechanical processes, which have
to be kept in mind to simulate the proposed kind of problems.

Plasticity & creep Clay materials behave in a visco-elasto-plastic manner. As the long term
behavior is of special interest in the proposed field of applications, the influence of creep
is neglected. Plastic effects might have a significant influence on the mechanical as well
as on the hydraulic subproblem. Consequently, they have to be considered in various
applications and are one topic of the work at hand.

Fracturing Especially the host rock in the far-field of a repository but also the engineered
barrier system in the near-field might contain different kinds of fractures. Depending on
the scale and physical treatment of fracturing, these effects might incorporate a lot of
effort to be solved numerically. Combined with uncertainties due to the lack of in-situ
measurements, fracturing is not part of the presented investigations in this work.

Non linearieties Nevertheless, various non linearities have to be handled. Especially the non
linear elastic compression behavior will be in focus in the following sections.

Dilatancy & Strain-hardening/Strain-softening Additionally, like most of the soils, the
clay provides dilatant as well as hardening and softening behavior, which is incorporated
in the model description.
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Swelling/Shrinkage & H Anisotropy & M Anisotropy Besides that, special properties of
the clay material like swelling, shrinkage and hydraulic and mechanical anisotropy are
included in the code.

Advection & Diffusion & Dispersion & Capillarity & Two-phase flow Concerning the
hydraulic effects, transport processes like advection, diffusion and dispersion and as a
consequence of the partial saturation two-phase flow and capillary effects have to be
considered.

M H
Permeability

Strength

Swelling/ ShrinkingM Anisotropy

Strain-hardening/
Strain-softening

Non-linearities

Creep

Plasticity

Capillarity

Two-phase-flow

Advection

Dispersion
Diffusion

Fracturing

H Anisotropy

T

Dilatancy

G.Ziefle (2006)

Figure 1.1: Hydraulic and mechanical processes in clay materials.

Summarizing this, the work at hand deals with the simulation of coupled hydraulic-mechanical
processes in clay materials. It focuses on interacting processes like the impact of mechanical
deformations as well as swelling and shrinkage on the porosity of the host rock. Additional
incorporation of the relationship between porosity and permeability leads to a strain dependent
permeability and indicates a direct influence on the hydraulic process. This relationship might
also be treated in an anisotropic way. As the proposed materials provide low initial porosities
this work additionally focuses on the impact of non linear elastic compression behavior for
geometric linear problems. Furthermore, a plasticity model of the Cam-Clay type is introduced,
incorporating effects like hardening, softening and pressure sensitivity. This kind of plastic
model pictures typical behavior of clay materials and is based on the usage of only few material
parameters which can be directly obtained from conventional laboratory experiments.
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The development of the finite element code RockFlow is part of the research at the
Institute of Fluid Mechanics since the 80th. Historically it was used for the simulation of
hydraulic processes in fractured media, multi-phase flow and transport processes. In the
last years it has been extended to a coupled hydraulic-mechanical and thermal program,
which is described in detail in (Kohlmeier, 2006). The coupling of the participating
hydraulic as well as mechanical processes takes place in the incorporation of stress-induced
strains in the mass balance of the fluid as well as in the application of Terzaghis effective
stresses. Additionally, non linear relations of capillary pressures and saturations as well as
relative permeability and saturations are used.

Box 1.1: RockFlow: State of the art

1.3 Numerical background

The proposed types of clay material can be simplified by the theory of porous media. Founding
on a kinematic description, balance equations as well as constitutive laws are applied to derive
a mathematical description of the physical problem. Special attention should be turned on the
physical and mathematical impact of the manifold interacting processes. As the finite element
method turned out to be very robust and flexible concerning the proposed kind of problems,
it is used to simulate the physical processes in a numerical way.

The available commercial simulation software (like ABAQUS, ANSYS amongst others) often
focus on selected single processes with a restricted set of preassigned couplings. For example
the incorporation of effects due to unsaturated media is often missing. Concerning the investi-
gation of low permeable clay materials in the framework of nuclear waste disposal, various very
specific effects and interactions have to be incorporated. Consequently, it is very advantageous
to work with a code, which can be adopted to the special kind of problem at every time. The
aspects presented in this work are implemented and investigated with the finite element code
RockFlow, which is shortly introduced in box 1.1.

1.4 Outline

The investigation of the coupled hydraulic-mechanical processes starts with the examination of
the physical model, which is expressed in a mathematical way and solved numerically. Within
this work the physical problem is presented in a more general way before it is simplified to
the specific hydraulic-mechanical problem. This procedure is chosen to provide a concise
presentation for engineers as well as mathematicians.

Precisely, the work at hand starts with the presentation of the theoretical background. As the
compressibility model as well as the elasto-plastic model are in the focus of the investigations
presented here, these two topics are extended from the purely theoretical chapter. They are
treated in a more detailed way in the following chapters. After that, the numerical approach is



1.4. OUTLINE 5

introduced and some applications are presented before the work is summarized. This procedure
ends up in the following chapters:

Chapter 1 - Introduction

Chapter 2 - Theoretical background Within this chapter the theoretical background of
the coupled hydraulic-mechanical problems is summarized. An overview of the theory
of porous media (TPM) based on the theory of mixture and the concept of volume
fractions is given. Afterwards the kinematical relations and the balance relations of
the mixture are incorporated and the relating constitutive equations introduced. The
chapter is restricted to linear elasticity, while extensions due to non linear elastic material
behavior and plastic effects are discussed in the following chapters. Finally, this chapter
provides a short introduction to the mathematical formulation of the problem.

Chapter 3 - A non linear elastic compressibility model This chapter deals with non lin-
ear effects in the compressive behavior of porous media. Starting with a general approach
for elastic material it shortly introduces the theory of a linear elastic compressible mate-
rial. Subsequently the necessity of a non linear elastic compressible model for geometric
linear problems is pointed out. The development of the model is motivated, before the
physical as well as the mathematical background and the derivation are presented. The
mathematical and physical outcomes of the proposed model are discussed and validated
by comparison with experimental results. Finally, the area of validity is discussed.

Chapter 4 - Elasto-plasticity Chapter 4 starts with an insight into the history of plastic
material modeling. Beginning from the first approaches for metal plasticity, the models
are continuously enhanced in various ways to provide their applicability for cohesive soils.
After that introduction, the main theoretical assumptions of elasto-plasticity models are
shortly summarized. Finally, a pressure sensitive, strain hardening and softening model
of the Cam-Clay type is introduced and its algorithmic formulation is given.

Chapter 5 - Numerical solution As the finite element method turned out to be very robust
and flexible, it is used for the numerical solution of the proposed problems. Accordingly,
a short introduction is given in this chapter. Afterwards, the relating mathematical
treatment as well as the usage of the finite element method for the derived balance
equations are presented for a general coupled hydraulic-mechanical problem. Finally,
some common solvers are referred to and a short introduction to the FEM code RockFlow
is given.

Chapter 6 - Benchmarks and applications The following benchmarks and applications are
presented and discussed:

Step-wise compression test
Assuming the material to behave non linear due to very low porosities, the resulting
deformation and pressure fields have to be investigated by the proposed non linear elastic
compressibility model. The difference between the linear and the non linear model as well
as the influence of the permeability are presented within this benchmark. The aspects
leading to a significant impact of the non linear model are pointed out.
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Step-wise compression test on a preloaded sample
In many applications an initial state has to be prescribed in terms of initial stresses or
initial compression associated with a predefined porosity. Therefore, the possibility to
determine a preloaded initial case is given in the model. The influence of this initial
state on the compression behavior is presented and an overview concerning the influence
of the existing pore space is given.

Foundation problem
Many geotechnical applications imply an initial consolidation of the material which de-
pends strongly on the geological depth. Consequently, a foundation problem on a nonuni-
formly preconsolidated soil is simulated. The arising plastic strains due to the pressure
sensitive elasto-plastic model are presented within this section.

Hardening and softening found in a triaxial test
The triaxial test is a common laboratory experiment within the context of geotechnical
investigations. Depending on the kind and actual state of the material, the material
indicates hardening or softening due to compression. The ability to simulate these
effects with the proposed model of the Cam-Clay type is shown in this section.

Deformation induced strain dependent permeability
Beside the classical couplings, the hydraulic process can be influenced by a strain depen-
dent permeability due to various processes like pure deformation or swelling and shrinkage
of the material. Additionally, the arising strains are affected by the chosen constitutive
model. This example focuses on the impact of mechanical deformation on the strain
dependent permeability. Within this context, the incorporation of plastic effects has an
impact on migration problems in low permeable materials as they are investigated in this
work.

Swelling induced strain dependent permeability
Swelling or shrinkage of a material is induced by a saturation change. The occurring
volumetric swelling strains have an impact on the strain dependent permeability, which
is investigated here. Related to this example, the influence of a swelling induced strain
dependent permeability on the hydraulic process is presented within the context of the
TDR experiment.

Migration test in a bentonite-sand-mixture (
”
TDR experiment“)

This application deals with a coupled hydraulic-mechanical process at unsaturated con-
ditions in a bentonite-sand-mixture with a very low permeability. Due to the precise
description of the experiment and the well investigated material properties, it provides
an insight in the capabilities and limitations of the simulation tool.

Chapter 7 - Summary



Chapter 2

Theoretical background

The work at hand focuses on the numerical simulation of geotechnical problems. Accordingly,
this chapter gives a short introduction to the theoretical background of the theory of porous
media which is used to picture the geologic material. To describe these physical relations in
a mathematical way, the classical continuum theory is applied to state the mechanical sub-
problem. Combined with the hydraulic subproblem and related constitutive laws, the balance
relations of the mixture are formulated. They build the foundation for the numerical problem.

2.1 Theory of porous media

The Theory of Porous Media (TPM) is a phenomenological theory which is used for volu-
metrically coupled solid-fluid aggregates. There exist various fields of applications in many
departments. For example biomechanical problems like the simulation of load distributions in
bones or flow processes in veins and arteries are investigated by the TPM. Concerning the
vehicle manufacturing porous polymers like dampers are simulated and finally, in the area of
geotechnics, materials like claystone, sand and rock salt are treated with this theory. Sum-
marizing this, materials which are build by an immiscible mixture of a solid skeleton and a
fluid pore content that should be analyzed on the basis of a continuum mechanical method
can be investigated by the TPM. This is a continuum approach of multiphasic materials based
on the Theory of Mixtures (TM) extended by the Concept of Volume Fractions. Especially
for geotechnical problems this procedure is reasonable as most of the applications provide
not enough information of the micromechanical constitution of the material. Consequently,
a homogenization of the material, as it is done by the Theory of Mixture (TM) is necessary.
In the following a short introduction to the TPM is given, for more information please refer
to (Ehlers & Bluhm, 2002), (Ehlers, 1989) or (de Boer & Ehlers, 1986). An overview of the
historical evolution is presented in (de Boer, 2000).

7
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2.1.1 Theory of mixture

Within this theory, a Representative Elementary Volume (REV) is defined and the real mi-
crostructure is statistically smeared out through this considered domain. The REV has to
be on the one hand large enough to allow for a statistical statement and on the other hand
small enough in comparison to the macroscopic domain for the application of scale separation
arguments. More information on the TM can be found in (Truesdell & Toupin, 1960). As
the TM incorporates no measure of any kind of microscopic information, the solution of the
presented problems also requires the usage of the Concept of Volume Fractions.

solid

liquid

air

Figure 2.1: Porous medium simplified to a homogenized model.

2.1.2 Concept of volume fractions

The considered volume consists of k individual superimposed and interacting materials which
compose the multiphasic aggregate. These constituents are statistically distributed over the
control space. The total continuum φ is defined by the sum of the continua φα with (α =
1, ..., k)

φ =
k∑

α=1

φα. (2.1)

Thus, each spatial point x of the control space Ω is simultaneously occupied by particles Pα

of all k constituents composing the multiphasic aggregate. Consequently, the mathematical
functions for the description of the geometrical and physical properties of the individual ma-
terials are field functions defined all over the control space. The volume V of the overall
multiphasic aggregate B might also be written in its integral form. This is used for the kine-
matical description and defined in equation 2.49. Within the context of volume fractions the
volume results from the sum of the partial volumes of the constituents φα in B :

V =

∫

B

dv =
k∑

α=1

V α (2.2)
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with

V α =

∫

B

dvα =

∫

B

nαdv. (2.3)

Here, nα denotes the porosity of the constituent φα which is defined as

nα =
dvα

dv
. (2.4)

Within the context of porous media, it is assumed, that the pore space is completely filled out
by the defined constituents. Especially for various applications in the field of coupled hydraulic-
mechanical problems, it is reasonable to introduce the saturation S. For that, we assume the
material to consist of a single porous skeleton φs and k-1 pore fluids φβ. Incorporating

nf =
k−1∑

β=1

nβ (2.5)

the saturation yields

Sβ =
nβ

nf
. (2.6)

For geotechnical problems many publications establish the void ratio e instead of the porosity.
e is defined by

ef =
dvf

dvs
(2.7)

where vs is the volume of the skeleton and vf the volume of the pore fluids respectively. The
relation between porosity and void ratio remains

ef =
nf

(1− nf )
. (2.8)

Within the context of this theory, two different definitions of the density of a material are
established.

• Definition of the mean particle density
The mass of the constituent α is related to its volume. This definition is called realistic
or effective density and results to

ρ̂α =
dmα

dvα
. (2.9)

• Definition of the bulk density
The mass of the constituent α is related to the total volume of the element. This density
is called global or bulk density. As in most of the applications this material parameter
is known, this definition is used in the following chapters:

ρα =
dmα

dv
. (2.10)
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2.2 Kinematical relations

The kinematical relations imply information on all quantities depending on the motion of a
body. Within a continuum mechanical approach, the motion of all material points of the body
represents the motion of the body. This body motion is described by the deformation in time
and the definition of corresponding strains and deformation tensors. The relating definitions
are introduced in the following chapter. Detailed information on the theoretical background
can be found in (Haupt, 2002), (Bathe, 1996), (Stein & Barthold, 1996) amongst others.

Figure 2.2: Initial and current configuration and relating definitions.

2.2.1 Initial and current configuration

Let a body B occupy a space B0 at time t0 = 0. Each material point P of the body can
be identified by a unique mapping of P onto the Euclidean space E3, which changes due to
a deformation. To differ the initial from the current configuration, the indices 0 and t are
introduced and the tensors are noted as an upper-case (initial configuration) or a lower-case
(current configuration) letter.

The position vector X of a point P in the initial configuration is defined by

X = χ0(P ) (2.11)

where χ0 is the corresponding mapping in the initial configuration. In general one assumes
the body B to be undeformed and stress free in the initial configuration. At an arbitrary time
t the body occupies the space Bt, and the mapping of each material point P at that time is

x = χt(P ) (2.12)

where x is called the position vector of P in the current configuration, and χt is the mapping
function in the current configuration. The mapping between X and x is shown in figure 2.2
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and given by

x = ΨX, (2.13)

X = Ψ−1 x. (2.14)

The displacement u of P in time is defined as

u = x−X (2.15)

and its velocity v is the material time derivative of the displacements

v =
du

dt
=

dx

dt
= ẋ. (2.16)

The acceleration of point P is

a =
d2x

dt2
=

dv

dt
= ẍ = v̇. (2.17)

2.2.2 Deformation gradient

In general, one wants to describe the deformation in an infinitesimal environment of each
material point P of the body in order to be able to determine the strains and rotations of
the material in P. Therefore, it is necessary to define a mapping between infinitesimal line
elements in the initial configuration dX and the corresponding line elements in the current
configuration dx.

dx = F · dX (2.18)

with

F = Gradx =
∂x

∂X
. (2.19)

Here, the deformation gradient F is called material deformation gradient. In contrast to that,
the inverse F−1 is called spatial deformation gradient and is defined by

F−1 = gradX =
∂X

∂x
. (2.20)

Depending on the displacements u, the material deformation gradient F yields

F = 1 +
∂u

∂X
= 1 + H. (2.21)

where H is the displacement gradient. The determinant of F is defined as the Jacobian J and
equals the proportion of the density in the initial and the current configuration

J = detF =
ρ0

ρt

> 0. (2.22)

To debar negative volumes, J has to be positive.
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Besides that, F is a non-singular two-point tensor which means that it can be written as

F = Fijei ⊗ Ej, (2.23)

where Fij are the components of F, ei are the base vectors in the current configuration and
Ej are the base vectors in the initial configuration.

Since the deformation gradient maps infinitesimal material line elements from the initial to the
current configuration, one can also use it to map infinitesimal surface and volume elements.
For surface elements one obtains Nanson‘s formula

nda = JF−T ·NdA, (2.24)

where n and N are the unit normal vectors on the surface element in the current and the
initial configuration, and da and dA are the surface areas respectively. Additional usage of the
Jacobian J leads to

dx = FdX (2.25)

da = JF−T dA (2.26)

dv = JdV. (2.27)

The material time derivative of the deformation gradient is called the material deformation
velocity gradient

Ḟ =
∂ẋ

∂X
(2.28)

and its transformation to the current configuration leads to the spatial velocity gradient

l = Ḟ · F−1 =
∂ẋ

∂x
. (2.29)

2.2.3 Strain tensors

The deformation gradient is not suitable as a strain tensor, as it is asymmetric and depends
on the direction and the rigid body motions. Due to the balance of momentum, the stresses
are symmetric and consequently a symmetric strain tensor should be defined to derive simple
material tensors. Accordingly, better descriptions for a strain tensor are defined due to the
examination of surfaces built by quadratic line elements. Using the Euclidic Norm ‖•‖ defined
in appendix A, the difference between initial and current configuration results to

‖dx‖ · ‖dx‖ − ‖dX‖ · ‖dX‖ = dx · dx− dX · dX (2.30)

= dX · FT · F · dX− dX · dX (2.31)

= dX · (FT · F · −1
) · dX (2.32)

= dX · (C− 1) · dX (2.33)

= dX · 2E · dX (2.34)
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with the right Cauchy-Green tensor C = FT ·F = U ·U and the Green-Lagrange strain tensor
E = 1

2
· (C− 1), defined in the initial configuration, or

‖dx‖ · ‖dx‖ − ‖dX‖ · ‖dX‖ = dx · dx− dx · F−T · F−1dx (2.35)

= dx · (1− F−T · F−1
) · dx (2.36)

= dx · (1− b−1
) · dx (2.37)

= dx · 2e · dx (2.38)

with the left Cauchy-Green tensor b = F · FT = V ·V and the Euler-Almansi strain tensor
e = 1

2
· (1− b−1), defined in the current configuration. The Green-Lagrange strain tensor E

as well as the Euler-Almansi strain tensor e are independent from the direction, symmetric and
zero for rigid body motions. For more informations please refer to (Stein & Barthold, 1996).

2.2.4 Linearization of the strain tensor

As the strain tensor for the geometrically linear theory arises from the Green-Lagrange strain
tensor, let‘ s have a closer look on it. With (2.21) it results

E =
1

2
· (FT · F− 1

)
(2.39)

=
1

2
·
(
(1 + H)T · (1 + H)− 1

)
(2.40)

=
1

2
· (H + HT + HT ·H)

. (2.41)

As can be seen, the strain energy tensor can be split additively into a linear and a nonlinear
part

E = Elin + Enonlin (2.42)

=
1

2
· (H + HT

)
+

1

2
· (HT ·H)

. (2.43)

Assuming the strains to be small in the sense of the geometric linear theory, it yields H =
Gradu ¿ 1 and the nonlinear part can be neglected in comparison to the linear part. This
linearization of E and accordingly e leads to the strain measure for the geometric linear theory

ε =
1

2

(
∂u

∂x
+

(
∂u

∂x

)T
)

. (2.44)

2.2.5 Stress tensors

On a solid body B two fundamental types of forces may act. Body forces are described by the
body force density b and surface forces are described by the tractions t. While body forces like
the gravitation are related to the entire volume of the material, the surface tractions just act
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on the boundary of the body. In the 3D case this means that surface tractions are vectors with
the physical unit [F/L2] and body force densities are vectors with [F/M ]. Surface traction
vectors are called stress vectors. Cauchy‘s theorem states that the stress vector t on the
surface da of an arbitrary cut of the body is a linear function of the outer normal vector n on
this cut and can be written as

t(x, t,n) = σtot(x, t) · n(x, t) (2.45)

with the symmetric Cauchy stress tensor σtot = σT
tot. Summarizing body forces and the

surface tractions leads to the totally force vector

f(B, t) =

∫

B

ρm(x, t)b dv +

∫

∂B

t da (2.46)

where ρm is the averaged mass density of the solid, defined in equation (2.50).

As the Cauchy stress tensor is defined in the current configuration, the first Piola-Kirchhoff
stress tensor P = Jσtot ·F−T is introduced, mapping a vector from the initial to the current
configuration

t da = σtot · n da = Jσtot · F−T ·N da = P ·N dA. (2.47)

Unfortunately, this stress tensor is nonsymmetric. As a matter of fact, the second Piola-
Kirchhoff stress tensor S is defined by

S = F−1 ·P = JF−1 · σtot · F−T . (2.48)

This tensor does not have any physical meaning, but due to its mathematical advantages, it
is usually used for the derivation of material tensors, as it is presented in chapter 3.

2.3 Balance relations of the mixture

Balance or conservation principles express fundamental physical observations concerning the
interaction of a continuous medium and the environment. They reflect the balance of the most
important physical measures for the body of interest. Within the classical theory of mechanics,
this implies the balance of mass, the balance of linear and angular momentum, the balance
of energy and the balance of entropy (please refer to (Bear & Verruijt, 1987), (Zienkiewicz
& Taylor, 2005), (Lewis & Schrefler, 2000)). The balance equations can be written in the
integral form for the whole body B or in the local form, concerning every single point P. One
has to keep in mind, that the volume V is not necessarily constant over the time. Rather, it
yields

dv = J dV. (2.49)

Application to coupled hydraulic-mechanical problems

The classical mechanical theory should be applied for a hydraulic-mechanically coupled prob-
lem. For this case, the porous medium is assumed to be composed of a gaseous phase ((•)g),
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water as the liquid phase ((•)w) and the solid skeleton ((•)s). As it is defined in equation
(2.6), the medium is called saturated, if there is no gaseous phase in the body, otherwise it is
called unsaturated. Consequently, for unsaturated single phase flow the averaged density ρm

is given by

ρm = (1− n)ρs + nρwSw + nρgSg (2.50)

where n is the porosity, Sw is the water saturation, Sg the gas saturation, ρw, ρs and ρg are
the density of the water, the solid body and the gaseous phase, respectively. In many cases,
the equation can be reduced to the first two terms, as the last one is significantly smaller. For
a water saturated continuum, the equation simplifies to

ρm = (1− n)ρs + nρw. (2.51)

2.3.1 Conservation of mass

The mass of a saturated body B with a mass density ρm(x, t) results to

m(B, t) =

∫

B

ρmdv =

∫

B0

ρmJdV =

∫

B0

ρm,0dV (2.52)

with

ρm,0 = ρmJ. (2.53)

As the mass of a body has to be constant if no fluxes occur, the time derivative of the mass
should vanish and for the balance of mass, it yields

ṁ =
d

dt

∫

B

ρmdv =
d

dt

∫

B0

ρm J dV =

∫

B0

d

dt
(ρm J) dV

=

∫

B0

( ˙ρm + ρm∇ · ẋ) J dV =

∫

B

( ˙ρm + ρm∇ · ẋ) dv (2.54)

with

J̇ = J ∇ · ẋ (2.55)

with the velocity v = ẋ. The local form of the mass balance is often called continuity equation
and is given for an arbitrary volume by

˙ρm + ρm∇ · ẋ = 0. (2.56)

Investigating the hydraulic subproblem in an unsaturated porous medium, the mass balance
equation may incorporate various effects. Detailed information can be found in (Lewis &
Schrefler, 2000).
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Application to coupled hydraulic-mechanical problems

For the hydraulic-mechanically coupled case, neglecting thermal effects and using the Richards‘
Approximation, the mass balance for the water species results to

nρw ∂Sw

∂t
+ ρwSw∇ · ∂us

∂t
= 0 (2.57)

which directly results from equation (2.56) incorporating equation (2.50) and assuming the
grains to be incompressible. The additional incorporation of a flux boundary condition leads
to the typical description of the conservation of mass within the context of a hydraulic-
mechanically coupled problem:

∇ · qw + nρw ∂Sw

∂t
+ ρwSw∇ · ∂us

∂t
= 0 (2.58)

Here, the variable qw denotes the flux of water over the boundary.

2.3.2 Conservation of linear momentum

The linear momentum I of a body is defined by

I =

∫

B

ρmẋ dv. (2.59)

The conservation of the linear momentum is also called the kinetic equilibrium of forces and
indicates that the temporal change of the linear momentum İ equals the sum of all forces
acting on the body.

d

dt

∫

B

ρmẋ dv =

∫

B

ρmb dv +

∫

∂B

t da = f . (2.60)

Figure 2.3: Forces acting on the body.

As explained in chapter 2.2.5 there exist body forces given by the body force density b and
surface tractions given by t. Using the Cauchy theorem given in equation (2.45), the local
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mass balance given in equation (2.56) and the Gauss‘ integral theorem (divergence theorem)
given by

∫

B

∇ · σtot dv =

∫

∂B

σtotn da (2.61)

leads to the following form of the balance of linear momentum

∫

B

ρmẍ dv =

∫

B

(∇ · σtot + ρmb) dv (2.62)

with the acceleration a = v̇ = ẍ. Consequently, the local form of the conservation of linear
momentum, also called strong form of the equilibrium or Cauchy equation of motion yields

ρmẍ = ∇ · σtot + ρmb. (2.63)

Application to coupled hydraulic-mechanical problems

This work focuses on quasi-statical mechanical problems. As a matter of fact, the left part
of the equation can be neglected. Also, for geotechnical problems, the body force density
normally equals the gravity g and consequently the static equilibrium equation results to

0 = ∇ · σtot + ρmg (2.64)

with the total stress of the solid σtot, the acceleration due to gravity g and the averaged
density ρm.

2.3.3 Conservation of angular momentum

The angular momentum L of a body is defined by

L =

∫

B

ρm (x− x0)× ẋ dv. (2.65)

The conservation of the angular momentum is also called the kinetic equilibrium of moments
and indicates that the temporal change of the angular momentum L̇ equals the sum of all
external moments acting on the body. The reference point x0 is arbitrary but fixed.

d

dt

∫

B

ρm (x− x0)× ẋ dv =

∫

B

ρm (x− x0)× b dv +

∫

∂B

(x− x0)× t da. (2.66)

With the balance of linear momentum given in equation (2.64), the Cauchy theorem given
in equation (2.45) and the Gauss integral theorem given in equation (2.61) it can be shown
that the local form of the balance of angular momentum leads to the symmetry of the Cauchy
stress tensor

σtot = σT
tot. (2.67)
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2.3.4 Conservation of energy

The energy balance equation is also called first law of thermodynamics. It states that the
temporal change of the total energy of a system equals the sum of the work supplied to a
body due to mechanical or thermal power. With the kinetic energy K, the internal energy U ,
the mechanical power M and the thermal power T supplied to the body it results to

d

dt
(K + U) = M + T (2.68)

with the kinetic energy

K =
1

2

∫

B

ρ ẋ · ẋ dv, (2.69)

the internal energy given as a function of the specific internal energy u composed of the strain
energy due to elastic strains and the stored heat

U =

∫

B

ρ u dv, (2.70)

the mechanical power resulting from all external forces acting on the body

M =

∫

B

ρm b · ẋ dv +

∫

∂B

t · ẋ da, (2.71)

the thermal power resulting from the heat due to internal heat sources given by ρ r and the
heat flux through the surface given by the heat flux vector q over the surface

T =

∫

B

ρ r dv −
∫

∂B

q · n da. (2.72)

Following these definitions the first law of thermodynamics yields

d

dt

∫

B

ρ

(
u +

1

2
ẋ · ẋ

)
dv =

∫

B

(ρ r + ρm b · ẋ) dv +

∫

∂B

(t · ẋ− q · n) da (2.73)

which can be reformulated to the local form using the Cauchy stresses, the divergence theorem
and the balance of linear momentum:

ρ u̇ = σtot : l + ρ r − ∇ · q (2.74)

2.3.5 Entropy inequality

Up to this point, the proposed formulation is only based on various balance equations. Fur-
thermore, the irreversibility of thermomechanical processes have to be assured. This is done
by the entropy inequality, also called Clausius-Duhem inequality. The introduced entropy η is
not a conserved measure, the increase of entropy in a system is larger than or for reversible
processes equal to the entropy brought into the system. This is given by

d

dt

∫

B

ρη dv ≥
∫

B

ρ
r

Θ
dv −

∫

∂B

1

Θ
q · n da (2.75)
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with the temperature field Θ. Introducing the intrinsic free Helmholtz energy ψ

ψ = u− η Θ (2.76)

the local form of this equation results to

−ρ
(
ψ̇ + ηΘ̇

)
+ σtot : l− 1

Θ
q · grad Θ ≥ 0 (2.77)

using the divergence theorem and the first law of thermodynamics.

For the isothermal case this law simplifies to

−ρu̇ + σtot : l ≥ 0 − ρu̇ + S : Ė ≥ 0 (2.78)

with u being the strain energy due to elastic strains and related to the mass. In the field of
classical mechanics the energy on a specific volume is interesting. Consequently, the strain
energy u is modified to the strain energy density function W

W = ρu. (2.79)

The material behavior can now be described by the strain energy density function W , which
will be discussed in a detailed way in chapter 3.

2.4 Constitutive equations

Constitutive relations are equations that relate causes and effects. They may arise from
experimental tests or other kinds of material testing and involve material parameters. While
the balance equations like conservation of linear momentum or mass have to be fulfilled
for every problem, the constitutive equations incorporate special properties of the problem
(e.g. material properties). As this work focuses on hydraulic-mechanically coupled problems
with unsaturated single phase flow and swelling, this chapter presents the most important
constitutive relations concerning this field of applications. It starts with the equations relating
the mechanical subproblem and continues with the description of the relations concerning the
hydraulic problem.

2.4.1 Linear elastic, isotropic material model

The constitutive equation which gives the relationship between strains and stresses for the
linear elastic, isotropic, linear geometric case is commonly given by the so-called Hooke‘s law
- which is more an empirical approach than a law - but that should not be discussed here. As it
is the common denotation, the presented relation will be referred to as Hooke‘s law within this
work. For detailed information please refer to (Desai & Siriwardane, 1984) amongst others.
Hooke‘s law was originally developed by Hooke in 1676 concerning the behavior of springs.
Later it was extended to 3D continuous bodies by Cauchy. This extension is still widely used
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and called the generalized Hooke‘s law. This law incorporates the so-called elastic constants
into the numerical model. For the isotropic case there exist five elastic constants - four of
them give a relation between stresses and strains, the fifth one (Poisson‘s ratio) relates one
extensional strain to another (see e.g. (Stein & Barthold, 1996)). The generalized Hooke‘s
law contains two arbitrary parameters, as only two of the five given constants are independent,
respectively. For the so-called Lamé parameters λ and µ it results to

σeff = λ tr ε(u)1 + 2µε(u) (2.80)

= C : ε (2.81)

with the material matrix C. More information as well as an extension of this material model,
incorporating non linear material behavior, are given in chapter 3.

2.4.2 Effective stresses

The Terzaghi approach of effective stresses is one of the most important constitutive ap-
proaches for soil mechanics. It is explained in detail in (Terzaghi & Fröhlich, 1936) and
(Terzaghi, 1943) and states that a load applied on a fully saturated body is ablated by the
solid skeleton as well as by the pore water in the body (see figure 2.4).

t = 0
t1 t2

t3

t4

t→∞

stot

p

seff

Figure 2.4: Terzaghi‘s approach of effective stresses according to (Terzaghi, 1943) .

As a matter of fact, it leads to pore water pressures as well as to effective stresses, which act
on the solid skeleton and can be calculated by the difference between the applied load and the
pore water pressure

σeff = σtot − (−p1). (2.82)
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Assuming the area of interest to be permeable at least at one boundary, the process becomes
time-dependent due to this effect, as the pressure gradient leads to a time-dependent fluid
flow (please refer to figure 2.4).

Additional consideration of compressible grains

The presented relationship turned out to depend on the material properties of the solid.
Assuming the soil particles to be compressible in an essential amount, the Biot coefficient α
should be used as an additional multiplicative parameter (see equation (2.85)). It remains

α = 1− K

Ks

, (2.83)

with the bulk modulus of the porous medium K and the bulk modulus of the solid grains
Ks. As the grain compressibility of most of the materials considered in this work is essentially
smaller than the compressibility of the porous medium we assume

α ≡ 1.0. (2.84)

Additional consideration of high capillary pressures

Additionally, there exist various approaches to extend this model for unsaturated problems.
Within this range, there exist capillary pressures and the proposed physical effect makes sense
theoretically. But especially for high negative pressures at a low saturation level, the high
capillary pressures lead to an overestimation of the effect. Assuming the pore pressure to
be defined by equation (2.96) and simplified by the proposed Richards‘ approximation leads
to an attenuation of the influence of high capillary pressures due to the incorporation of the
saturation Sw. The effective stress law yields

σeff = σtot − (−αSwpw1). (2.85)

Within the literature, this approach is found to be modified in various ways. The modification
given by (Lu & Likos, 2004) is presented and applied in section 6.7.

2.4.3 Linear swelling model

Some geotechnical materials (e.g. claystone) incorporate a volumetric deformation due to a
change of the water content. In order to incorporate this swelling or shrinkage of the material,
an extension of the Biot consolidation theory is used. The calculation of the stresses for the
elastic case remains

σeff = C : ε (2.86)

with the fourth-order tensor C comprised of the linear elastic coefficients and the strains ε
resulting to

ε = εel + εsw (2.87)
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whereas
εsw = βsw∆Sw1 (2.88)

∆Sw = Sw − Sw
0 (2.89)

where Sw
0 is the reference saturation, belonging to the reference volumetric strain εvol,sw

0 . Sw

equals the actual saturation, while it is in the range between Sw
min and Sw

max. Out of this range,
the marginal value has to be used (see figure 2.5).

Figure 2.5: Linear swelling model.

2.4.4 Strain dependent porosity

The porosity n can be recalculated depending on the initial porosity n0 and the volumetric
strain caused by deformation tr ε and/or swelling/shrinkage tr εsw of the material. It results
to

n = n0 + tr ε− tr εsw. (2.90)

This approach assumes the volumetric strain caused by deformation to affect the pore space,
not the size of particles. Consequently, an expansion will lead to an increase; a compression
to a decrease of pore space. In contrast to that, swelling or shrinkage leads to a change of the
particle size of the material. As a matter of fact, the pore space will decrease while swelling,
and increase while shrinkage occurs.

2.4.5 Darcy´s law

Darcy´s law is a generalized relationship for flow of Newtonian fluids in porous media. It can
be derived from the conservation of linear momentum supplemented by a material dependent
proportionality constant kf which quantifies the permeability of the material for a fluid. It
was established under saturated flow conditions but it may be transfused for unsaturated and
multiphasic flow to the modified Darcy´s law. Consequently, the liquid flux for the coupled
hydraulic-mechanical case is governed by:

qw = −k krel

η
(∇p− ρwg) (2.91)
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b b b

h h h

Δ h

Figure 2.6: Modification of the initial porosity (left) due to deformation (center) and swelling
(right).

Here, the liquid flux qw results from the intrinsic permeability k, the relative permeability krel

(see section 2.4.6), the liquid pressure p, the fluid absolute viscosity η, the density of water
ρw and the acceleration due to the gravity vector g.

Within this approach the intrinsic permeability k given in [m2] is used. k depends only on the
nature of the porous medium. As mentioned above, the classical derivation of Darcy‘s law
incorporates the proportionality constant kf given in [m/s] which depends on the attributes
of the fluid as well as on the attributes of the solid. The relation between the proportionality
constant kf , and the intrinsic permeability k is given by

kf = k
ρw g

η
. (2.92)

2.4.6 Definition of a relative permeability

The permeability of a material is on the one side affected by the saturation, on the other side
by the porosity of the material. These dependencies are treated in different ways.

1. Saturation dependent permeability
The saturation dependency is commonly treated by the definition of a relative permeabil-
ity krel. The absolute permeability, used in Darcy‘s law results from the multiplication
of this relative permeability with an intrinsic permeability kint. The relationship of rel-
ative permeability and saturation is given for example by the van Genuchten or the
Brooks-Corey relation. Exemplarily, a derived relation is presented in figure 2.7.

2. Porosity dependent permeability
A constitutive relationship between the permeability k and the porosity n has to be
defined. In the literature there are only few approaches for such a relationship. A possible
approximation for this function is given by the Kozeny-Carman equation (e. g. (Bear,
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1972)) for granular media:

k =
n3

(1− n)2

1

5M2
S

(2.93)

with the specific surface MS of a porous material and the absolute permeability k. A
description of the related physical background can be found in (Kozeny, 1927).

Incorporating this physical approach in the coupled finite element code, equation (2.93)
is integrated and reformulated for the relative permeability krel,n. With the porosity n
and the initial porosity n0 it results to

krel,n =
n3

(1− n)2

(1− n0)
2

n3
0

. (2.94)

The relationship is presented in figure 2.7 for an initial porosity of 0.296. As it is pointed
out, this relationship is derived for granular media. Comparing it with data given for
other materials like claystone, the approach turned out to give satisfying results for the
applications presented in this work.
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Figure 2.7: Relationship of permeabiliy and porosity (left) and of permeability and saturation
(right).

The relative permeability depending on the water saturation and the porosity yields

krel = krel,S · krel,n. (2.95)

2.4.7 Richards‘ approximation

By definition, the pore water pressure p for the unsaturated case results to

p = Swpw + Sgpg (2.96)
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with the pore pressure of the water pw and the gaseous phase pg.

Richards proposed in 1931 an approximation for soil systems that are connected to the surface.
It states that pressure changes in the gaseous phase can be neglected. Due to this approach the
pressure of the gaseous phase is equal to the atmospheric pressure and assumed to be constant
within the domain. This assumption leads to a direct dependency of the water saturation from
the pore water pressure.

As a consequence, the differentiation between the saturated and the unsaturated case can be
done by the comparison of the pore water pressure to the reference pressure, which is normally
given by the atmospheric pressure. If the pore water pressure is below the reference pressure, it
is called capillary pressure. The body is assumed to be partially saturated and the dependency
of the capillary pressure and the saturation is given by a constitutive relation. If the pore water
pressure is above the reference pressure, the body is fully saturated and the couplings due to
the effective stress law, potentially extended by the Biot consolidation theory come into play
for coupled hydraulic-mechanical problems.

To incorporate the impact of the compressibility of the matrix, the liquid and the gaseous
phase to a purely hydraulic problem, the soil storativity may be introduced as it is done e.g.
in (Thorenz, 2001).

2.5 The mathematical point of view

The formulation of the physical coupled hydraulic-mechanical problem is given in the previous
chapters. As the remaining set of equations should be solved by a numerical method, it is
important to investigate the applicability of the mathematical procedure to the existing physical
problem. Consequently, the aim should be to define essential and sufficient conditions for the
physical problem, which involve the existence and uniqueness of the numerical solution. More
information concerning the mathematical point of view can also be found in (Simo & Hughes,
1998), (Stein & Barthold, 1996), (Knabner & Angermann, 2003), (Starke, 2004) and (Starke,
2003) amongst others. As the coupled problem is stated by a partial differential equation, this
chapter starts with a short introduction to this topic.

2.5.1 Partial differential equations

Partial differential equations are equations involving some partial derivatives of an unknown
function u in several independent variables. An example is given in equation (2.56) with the
local form of the mass balance. This type of equations has the common form for the local
case

∂tS(u) + ∇ · (q(u)) = Q(u) (2.97)

where the storage term S quantifies the change of mass, the fluxes are given by q (resulting
from the convective and the diffusive fluxes or the displacement) and the source term yields
Q. The unknown is given by u and pictures the displacements or the pressure gradient,
respectively.
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The conservation equation has to be supplemented by initial and boundary conditions which
are introduced in section 5.1.4. Depending on the boundary conditions the problem can be
divided in different types of problems. It is called nonstationary problem if the storage term
S 6= 0, otherwise one have a stationary problem. Additionally, if the fluxes q = 0, the boundary
conditions are referred to as homogeneous boundary conditions otherwise as nonhomogeneous
boundary conditions. Furthermore, if q does not depend linearly on u, one have a linear
boundary condition otherwise a nonlinear boundary condition.

These definitions lead to the following classification of the problems. Boundary value problems
(BVP) are stationary problems and initial-boundary value problems (IBVP) have arbitrary
boundary conditions combined with an initial condition.

Differential equations can be defined nonlinear (due to a nonlinear relationship of S, q, and
Q), quasilinear (if all derivatives of the highest order are linear), semilinear (if nonlinearities
exist only in u, but not in the derivatives) or linear (if Q(u) = −ru + f). If f is termed zero,
the linear differential equation is termed homogeneous, otherwise inhomogeneous.

For the proposed geotechnical problems, the resulting partial differential equation is called
elliptic if the eigenvalues are not zero and if all of them have the same sign. This yields for
stationary boundary value problems e.g. subsurface flow or fully saturated porous medium with
stationary hydraulic potential. The relating problems are called linear elliptic BVP. Concerning
the deformation of solids, a linear elastic material behavior results in a linear elliptic BVP. In
spite of that, these kind of problems might be complicated due to the nonlinearities if plasticity
and nonlinear elasticity are included. This may lead to time-dependent problems.

If one eigenvalue is positive and the other one is negative a convection dominated problem is
indicated. These problems are elliptic or parabolic close to the hyperbolic case. A problem is
called parabolic if exactly one eigenvalue is equal to 0 as it may be the case for nonstationary
initial-boundary value problems.

Besides that, the investigation of variably saturated porous medium, which is time-dependent
and nonlinear, results in nonlinear parabolic initial-boundary value problems. The depth-
averaged surface flow investigated by the so-called shallow water equations is also time-
dependent and nonlinear but shallow water equations are rather hyperbolic than parabolic
as there exists a strong direction dependence of the solution.

The following remarks are restricted to 2nd order problems as most of the geotechnical prob-
lems are of this order. The proposed equations have to be discretized in time and space as it
is described in chapter 5.

2.5.2 Mathematical formulation of the classical boundary value prob-
lem (BVP)

The classical linear boundary value problem is given by the balance equation (2.64), the
Cauchy theorem (2.45) and the acquainted linear displacement boundary condition given by
the displacements at a part of the boundary u. With the Hooke‘s law valid for the linear case



2.5. THE MATHEMATICAL POINT OF VIEW 27

(given in (2.80)) it yields

0 = ∇ · (λ tr ε(u)1 + 2µε(u)) + ρmg. ∀ X ε B0 (2.98)

t0 = (λ tr ε(u)1 + 2µε(u))n ∀ X ε ∂B0,t (2.99)

u = u = 0 ∀ X ε ∂B0,u. (2.100)

For further treatment, a bounded, open and connected subset Ω ⊂ R3 with a sufficient smooth
boundary Γ is considered. The boundary where the displacements are disabled is defined by
Γ1 = ∂B0,u and the boundary where the surface tension acts is defined by Γ2 = ∂B0,t.
Consequently, it counts

Γ = Γ1

⋃
Γ2 and Γ1

⋂
Γ2 = ∅. (2.101)

The initial configuration B0 is than given by the closure Ω̄ of Ω. As it is defined previously,
the points X of the initial configuration B0 are termed x ε Ω̄.

Additionally, it is defined that:

L[u(x)] := −∇ · (λ tr ε(u)1 + 2µε(u)) (2.102)

B[u(x)] := (λ tr ε(u)1 + 2µε(u))n (2.103)

f := ρmg (2.104)

g := t0 (2.105)

This leads to the following notation for the classical boundary value problem

L[u(x)] = f(x) in Ω (2.106)

u = 0 at Γ1 (2.107)

B[u(x)] = g(x) at Γ2 (2.108)

This BVP is defined in a reell vector space C with the scalar product

(u,v) :=

∫

Ω

u(x) · v(x) dx u,v ε C(Ω̄) (2.109)

It can be shown, that this BVP has a unique solution as it is equivalent to a minimization
problem. To mathematically proof the existence of a solution, the linear BVP has to be
reformulated to a weak form.

2.5.3 The weak form

As a consequence of the weak formulation the requirements on the problem and the solution
decrease. Physically this step is justified by the approach of the principle of the virtual work.
Strictly speaking this is not the same as the weak form, as the requirements on the test
functions are not the same than the requirements on the virtual displacements (the virtual
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displacements have to be infinitesimal small, the test functions are not restricted in that way).
In spite of that difference, it is the common way to modify the problem in the proposed manner.

For the mathematical problem that means that, while there must exist continuous strong
derivations for the strong formulation, the weak form only demands the existence of the
integrals. This is given if the problem is square integrable within the sense of the Lebesgue
Integral (please refer to appendix A.8), what means that there exists a convergence of a
sequence of simple functions.

One resulting requirement for the weak form is the formulation of the given equations (2.106),
(2.107) and (2.108) with functions being elements of an appropriate Hilbert space V, instead
of only sufficient continuous functions. This means that instead of u, f ,g ε C2(Ω) it yields
u, f ,g ε V where V is an appropriate Hilbert space with an appropriate scalar product. More
information on the preconditions of this space can be found in section 2.5.4.

Introducing an arbitrary test function v ε V results in

(L(u),v)− (f ,v) = 0. (2.110)

which can be paraphrased to the weak form of the BVP

∫

Ω

[σeff(u) : ε(v)] dx−
∫

Ω

f · v dx−
∫

Γ2

g · v ds = 0 (2.111)

by usage of the scalar product, the Gauss‘ integral theorem and the boundary conditions. To
assure, that the strain energy function remains finite for arbitrary test functions v, it has to
hold that v ε H1

0(Ω̄) with the Hilbert space H1
0.

Summarizing this leads to the theorem given in Box 2.1.

2.5.4 Investigating the weak form

Considering the common variational problem (pictured in box 2.2) the evidence of the existence,
the uniqueness and the stability of the weak form in an adequate Hilbert space is given by the
conditions of the Lax-Milgram-Lemma given in box 2.3.

Within this context, the uniqueness of the solution and the continuous dependency of the
solution and the problem can be shown with additional usage of the V-ellipticity of a(u,v)
and the continuity of F. Furthermore, applying the description sentence of Rieszsch leads to
the existence of the solution. Another important property of the solution is the regularity.
This means that the solution of the weak formulation exhibit adequate differentiability to be
a solution for the strong form of the classical BVP. This point can be investigated using the
embedding theorem of Sobolev and observing the behavior of the function u on the boundary
Γ.

Additionally, some preconditions for the Hilbert space and the Lax-Milgram-Lemma should be
considered:
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The determination of the solution u of the linear boundary value problem

L[u(x)] = f(x) in Ω (2.112)

u = 0 at Γ1 (2.113)

B[u(x)] = g(x) at Γ2 (2.114)

with L and B given in the equations (2.102) and following is formally equivalent to the
solution of u ε V of the weak form

a(u,v) = F(v) ∀v ε V (2.115)

with the bilinear form and the linear form respectively

a(u,v) :=

∫

Ω

λ(tr ε(u)tr ε(v)) + 2µε(u) : ε(v) dx (2.116)

F(v) :=

∫

Ω

f · v dx +

∫

Γ2

g · v ds. (2.117)

V termed a space with sufficient smooth functions u : V → R3, which vanishes on Γ1.

Box 2.1: The linear boundary value problem (LBVP).

Determine an u ε V, such that

a(u,v) = F (v) ∀ v ε V. (2.118)

Box 2.2: The common variational problem.

Let a(u,v) be a continuous and V-elliptic bilinear form, which means that the constants
α > 0 and M > 0 exist so that

| a(u,v) |≤ M ‖ u ‖V‖ v ‖V ∀ u,v ε V (2.119)

a(u,u) ≥ α ‖ u ‖2
V ∀ u ε V. (2.120)

Additionally, let F be a continuous linear form at V. Than there exists exactly one solution
u ε V of (2.118).

Box 2.3: Lax-Milgram-Lemma.
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• a(u,v) has to be a symmetric bilinear form

Defining

a(u,v) :=
1

2

∫

Ω

σeff(u) : ε(v) dx (2.121)

with linear σeff and ε, incorporates the bilinear form of a : V × V → R3.

• a(u,v) has to be a continuous, symmetric bilinear form

The continuity of a is given in the Hilbert space V with the norm ‖ • ‖V (defined
in appendix A) if there exists a M > 0, such that

| a(u,v) |≤ M ‖ u ‖V‖ v ‖V ∀u,v ε V. (2.122)

This can be shown by usage of the bilinear form, the Cauchy-Schwarz-inequality and
Hooke‘ s law. The proposed examination also announces the appropriate Hilbert space
given in (2.123).

• V has to be an appropriate Hilbert space

As explained above, the investigation of the continuity of the bilinear form leads to
the appropriate Hilbert space:

V := {v ε(H1(Ω))3 |v = 0 at Γ}. (2.123)

• F has to be a continuous linear form

With

F(v) :=

∫

Ω

f · v dx +

∫

Γ2

g · v ds (2.124)

this requirement directly results from the continuity of f ,v and g.

• a(u,v) has to be V-elliptic

The V-ellipticity implies that there exists a constant α > 0 such that

a(u,u) ≥ α ‖ u ‖2
V ∀u ε V ⊂ (H1(Ω))3. (2.125)

To show this, it is necessary to prove the equivalence of the half norm to the norm ‖ •‖1,Ω

of the Hilbert space for every displacement v of the chosen Hilbert space V = (H1(Ω))3.
This can be done applying the inequality equation of Korn.



Chapter 3

A non linear elastic compressibility
model

Within the simulation of coupled geotechnical problems, the use of the well-known linear elastic
material model, called Hooke‘s law, is widely spread. Nevertheless, some additional non linear
effects have to be incorporated for various applications, e.g. the investigation of migration
problems in mechanically loaded rocks with very low porosities and permeabilities.

Incorporating the nonlinearity due to the compressive behavior of the material influences the
mechanical as well as the hydraulic subproblem. Particularly, the high compression of materials
like dense smectite clays leads to a significant influence of the non linear compression behavior.
This kind of materials is used for example for backfills or plugs of drifts, tunnels and shafts or for
plugs in boreholes as well as in various fields of waste isolation (e.g. waste landfills). Because
of the low initial porosities, also the compression behavior of host rocks like claystone used for
high radioactive waste disposal is significantly influenced by the non linear compressibility.

Generally, one can state, that highly compressed materials as well as materials with a very low
initial porosity have to be analyzed with an extended elastic model. Consequently, the work at
hand presents an extension of the Hooke‘s law to a non linear elastic compressibility model.

This chapter starts with a short presentation of the general procedure for the derivation of
constitutive material models. After that, it gives a short introduction to the linear elastic
Hooke‘s law, before the non linear elastic compressibility model is introduced. Concerning
this non linear theory, the physical background as well as relating definitions, the theory and
requirements on the strain energy function are presented in a detailed way. Finally, the proposed
model is validated by the comparison with experimental data found in the literature. Some
applications are given in chapter 6 in section 6.1 and section 6.2.

3.1 General derivation of constitutive material models

The main feature of an elastic constitutive model is the existence of a reversibel and energy
conserving deformation process, implicating the existence of an energy potential. Within the

31



32 CHAPTER 3. A NON LINEAR ELASTIC COMPRESSIBILITY MODEL

classical theory of elasticity, this fact is based on the existence of the so called strain energy
function W . If an elastic body is loaded by specified displacements or forces, the resulting
deformations imply a certain energy which is stored in the body. If the applied loads or specific
displacements are removed, the energy will be recovered from the body. More information
concerning the derivation of the elasticity theory can be found in (Davis & Selvadurai, 1996),
(Haupt, 2002), (Zienkiewicz & Taylor, 2005) amongst others. For isothermal processes and
perfectly elastic homogeneous materials producing no entropy, the strain energy function W
related to the volume of the body as it is introduced in section 2.3.5 depends only on the
strains and is given by

Ẇ =
∂W

∂E
: Ė (3.1)

with the Green-Lagrange strain tensor E defined in section 2.2.3. Depending on the properties
of the material like symmetry or compressibility, there exist various ways to constitute the strain
energy function. An overview is presented in (Doll, 1998). The common definition of a strain
energy function W for small deformations and linear elasticity leads to the Hooke‘s law

W =
1

2

∫

B

σ : ε dV. (3.2)

This energy function comprised the total elastic energy, stored in the body and equals the
work of the external loads. The strain energy function on the representative volume element
(RVE) remains

W =
1

2
(σ : ε) (3.3)

and may be split into a deviatoric and a volumetric part

W =
1

2

[(
σdev +

1

3
tr σ 1

)
:

(
εdev +

1

3
tr ε1

)]
. (3.4)

The stress field in the body is given by the derivative of the energy function with respect to
the strains

σ =
∂W

∂ε
. (3.5)

This coherence follows from the principle of the positive internal dissipation (2nd fundamental
theorem of thermodynamics) which is presented in section 2.3.5 and implicates a constitutive
relation of the stresses and the strains, depending on the energy potential.

The material matrix results from another differentiation and yields

C =
∂2W

∂ε2
=

∂σ

∂ε
. (3.6)

This leads to the incremental relation

∆σ = C∆ε. (3.7)

If the material matrix depends on the process variables, e.g. the existing strain field it is called
non linear and is given by

C = C(ε). (3.8)
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3.2 Linear elastic, compressible material

Assuming the strain energy function to be defined in the following way

W =
1

2
εC ε =

1

2
λ (tr ε)2 + µε : ε, (3.9)

the stresses, resulting from the derivative of the energy function to the strains, are given by

∂W

∂ε
= σ = λ(tr ε)1 + 2µε. (3.10)

In this formulation λ and µ are the well-known Lamé parameter. This is the classical formu-
lation for elastic materials and is already introduced in section 2.4.1 as the Hooke‘s law:

σ = C : ε (3.11)

Within this case, the material matrix C for isotropic material results to

∂σ

∂ε
= C = λ1⊗ 1 + 2µI (3.12)

or in matrix notation (with the definitions given in appendix A.1)

C =




λ + 2µ λ λ 0 0 0

λ λ + 2µ λ 0 0 0

λ λ λ + 2µ 0 0 0

0 0 0 2µ 0 0

0 0 0 0 2µ 0

0 0 0 0 0 2µ




. (3.13)

3.3 Non linear elastic, compressible material

Assuming a linear elastic compressible model there is no limitation of the possible compaction of
the material. Generally, the solid grains are presumed to be incompressible and the deformation
only leads to a change of the porosity of the material. In spite of that, in many applications
the incompressible state is not reached as most of the materials have relatively large porosities
while the deformations are small. Applying this linear model to the prescribed materials with
very low porosities, there is an important difference. In this case, even small volumetric
deformations lead to a porosity near the compression point. At that point there is nearly no
more pore space available and the material becomes incompressible.

To represent this situation with the theoretical model, a physically non linear elastic compress-
ibility model which incorporates a compression point and restricts the porosity to the valid
range has to be applied. Implementing this effect in the numerical model, an extension of the
classical Hooke‘s law by an additional term is proposed as it is done by (Eipper, 1998) for the
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geometric non linear case. The modification for the geometric linear case, incorporating the
initial state is described in the following. Due to the usage of a strain dependent permeability
as it is presented in section 2.4.6 this effect also influences the hydraulic subproblem. The
motivation for the development of a non linear elastic compressibility model for the geometric
linear case is summarized in figure 3.1.

Various publications consider the effect of pore space and pore water pressure on the com-
pressibility of the material. General remarks are given in (Davis & Selvadurai, 1996). Finally,
there exist two common approaches to comprise this physical effect. On the one side, there
exist purely mechanical models with a non linear elastic compressible approach (presented
e.g. in (Eipper, 1998)). These models are used for geometric non linear problems with large
deformations. On the other side, a common approach is the application of a bulk modulus
depending on the pore space, the pore water pressure and the original bulk modulus of the
material (given in (nagra-Opalinus, 2002) and others). This approach is used in various models
and indicates an additional coupling of the hydraulic and the mechanical process.

To assure the clearness of the coupled model and to relate numerical coupling effects directly
to physical processes, the work at hand treats the problem in a purely geometrical, mechanical
way. The influence of the hydraulic process is already incorporated with Terzaghi‘s effective
stress approach. Consequently, a purely mechanical approach is chosen. In this chapter,
the physical as well as the theoretical background of the developed model are introduced.
Afterwards, the mathematical and physical requirements are reviewed before the results are
compared to experimental data found in the literature. The chapter finishes with some final
remarks.

3.3.1 Physical background and relating definitions

Generally, in the theory of porous media, the material is composed of air, liquid and solid
grains (see Chapter 2.1). While the air and the liquid are stored in the pore space of the
body, the solid grains provide the material matrix. Assuming the solid grains to be incom-
pressible, deformations only lead to a change of the pore space in the body. If the so called
compression point is reached, there is no more pore space available and the material becomes
incompressible. As a matter of fact, the investigation of materials with very small porosities
may lead to incompressible material behavior already for deformations in the range of geomet-
ric linear material behavior. Consequently, a non linear elastic compressible material in the
range of geometric linearity has to be defined. The material model has to fulfill the following
requirements:

1. The valid range should be the range of geometric linear deformations.

2. The low stress case should imply a material behavior similar to the behavior of Hooke‘s
material.

3. The compression should be limited to the compression point. Convergence to this point
should lead to a significant increase of the stresses.
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THE DEVELOPMENT OF A

NON-LINEAR ELASTIC COMPRESSIBILITY MODEL

FOR GEOMETRIC LINEAR PROBLEMS

IS NECESSARY.

The strain dependent porosity  is given by:

n=n +tr -tr0 e e
el sw

Caution:                        n>0                      must hold!

General assumptions for geotechnical applications:

The matrix material is incompressible.
Porosity changes arise due to deformations.

Consequently:

A limiting value for the deformations exists!

Typical applications for non-linear elastic compressibility models are given by:

Large deformation of materials with relatively large porosities.

Consequently:

Applications related to the problems of waste disposal indicate no geometric non-
linear problems but very small porosities. It yields:

Small deformation of materials with relatively small porosities.

And again:

NON-LINEAR MATERIAL BEHAVIOR ARISES DUE TO DEFORMATIONS

IN THE RANGE OF THE POROSITY.

NON-LINEAR MATERIAL BEHAVIOR ARISES DUE TO DEFORMATIONS

IN THE RANGE OF THE POROSITY.

Figure 3.1: Motivation for the development of the non linear elastic compressibility model for
the geometric linear case.

.



36 CHAPTER 3. A NON LINEAR ELASTIC COMPRESSIBILITY MODEL

An additional term of the strain energy function is given here to represent the mentioned
material behavior. This term should modify the linear elastic case in the required way. As
the behavior of the material significantly depends on the remaining pore space of the body,
the function should depend on the porosity of the body. Therefore the porosity should be
treated as a time-dependent material property. This is done by the proposed strain dependent
porosity, which is already presented in section 2.4.4. Here the porosity is given by

n = n0 + tr ε− tr εsw. (3.14)

As the material behavior is non linear, there must be a definition of an initial material behavior.
This initial state should depend on the initial porosity of the material. To get a relation between
the initial porosity and the initial stress conditions in the body, a difference between the initial
and the stress-free porosity is made.

The stress-free porosity is the porosity of the material which indicates the beginning of elastic
material behavior. It results from an unconstrained storage with no (sand-like materials) or
only marginal (clay materials) compaction. It yields

nSF = nσ=0. (3.15)

The initial porosity is defined by

nIC = n0 = nt=0. (3.16)

The difference of both is given by

(∆n)0 ≡ ∆n = nIC − nSF (3.17)

and presented in figure 3.2 for a material without preconsolidation and in figure 3.3 for a
preconsolidated problem.

The strain field in the body is given by the elastic deformations due to the loads applied during
the simulation time and the difference of stress-free and initial porosity ∆n. The trace of the
total strains results to

tr εtot = tr εel + tr ε0 (3.18)

= tr εel + ∆n. (3.19)

3.3.2 Theoretical background of the non linear compressibility model
for the geometric linear case

A strain energy function for the geometric non linear case is given by (Eipper, 1998). He
proposed to extend the classical Hooke approach by the additional term Wnlc due to the non
linear compressibility of the material

W = WHooke + Wnlc (3.20)
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Figure 3.2: Physical model for the compression of porous media without preconsolidation.
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Figure 3.3: Physical model for the compression of porous media with preconsolidation.

with

Wnlc =
λc

γ
(
γ − 1 + 1

n2
SF

)
(

Jγ − 1− γ ln
J − (1− nSF)

nSF

+ γ(1− nSF)
J − 1

nSF

)
. (3.21)



38 CHAPTER 3. A NON LINEAR ELASTIC COMPRESSIBILITY MODEL

With the Jacobian J and γ being a control parameter for the volumetric behavior. For the
given applications, this parameter is set to γ = 1. Within the framework of the compressibility
model, the common Lamé parameter λ is replaced by the compression parameter λc which is
defined by

λc =
1

2
λ. (3.22)

The additional term of the strain energy function remains

Wnlc =
1

2
λn2

SF

(
J − 1− ln

(J − 1 + nSF)

nSF

+ (1− nSF)
J − 1

nSF

)
. (3.23)

For geometric linearity, this term can be simplified by J = detF = tr εel + 1. Consequently,
the additional term of the strain energy function results to

Wnlc =
1

2
λn2

SF

(
tr εel − ln

(tr εel + nSF)

nSF

+ (1− nSF)
tr εel

nSF

)
. (3.24)

Incorporating this additional term to the classical linear approach, the total energy function
remains

W =
1

2
λ

[
1

2
(tr εel)2 + n2

SF

(
tr εel − ln

(tr εel + nSF)

nSF

+ (1− nSF)
tr εel

nSF

)]
+ µε : ε. (3.25)

Assuming the initial condition to be not necessarily equal to the stress-free condition, the total
trace of strains results from equation tr εtot = tr εel + ∆n (given in equation (3.18)). For this
case, the initial condition has to be incorporated in the strain energy function by using the
total trace of strains tr εtot instead of tr εel for the compression term. The energy function
yields to

W =
1

2
λ

[
1

2
(tr εel)2 + n2

SF

(
tr εtot − ln

(tr εtot + nSF)

nSF

+ (1− nSF)
tr εtot

nSF

)]
+ µε : ε

=
1

2
λ

[
1

2
(tr εel)2 + n2

SF

[
tr εtot

nSF

− ln

(
1 +

tr εtot

nSF

)]]
+ µε : ε. (3.26)

The derivation of stresses follows from differentiating with respect to the strains

σ =
∂W

∂ε

=
1

2
λ

[
tr εel + nSF

(
1− nSF

tr εel + nIC

)]
1 + 2µε

=
1

2
λ

[
tr εel + nSF

(
1− nSF

tr εtot + nSF

)]
1 + 2µε. (3.27)

Figure 3.4 shows the relation of stresses and tr εtot. It can be seen that there exists an initial
porosity which not necessarily equals the stress free porosity. The difference is given by ∆n.
Assuming the stress depending on the volumetric strains, the ∆n is incorporated in the model
as a kind of volumetric strain which is added to the elastic volumetric strains by the definition
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Figure 3.4: Nonlinear elastic compressible material model.

of tr εtot. This incorporates some initial stresses to the model. The figure also shows that the
given stress function leads to a significant increase of stresses in the compression area. This
leads to limited strains in this range. Here the material converges to the incompressible state
due to the lack of pore space.

Another differentiation leads to the material matrix

Ctang =
∂σ

∂ε
=

1

2
λ

(
1 +

n2
SF

(tr εel + nIC)2

)
1⊗ 1 + 2µI

=
1

2
λ

(
1 +

n2
SF

(tr εtot + nSF)2

)
1⊗ 1 + 2µI. (3.28)

3.3.3 Requirements on the strain energy function

To prove the physical correctness of the proposed non linear compressibility model, the common
procedure is given e.g. in (Eipper, 1998) or (Müllerschön, 2000). The following requirements
have to hold.

1. The undeformed state has to be stress free. Consequently, for tr εtot = 0.0 and nIC =
nSF there exist no stresses. Resulting from equation (3.27), it yields

∂W

∂ε
= 0. (3.29)

And consequently for W , defined in (3.26), it has to follow that

W = 0. (3.30)
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2. A deformation to the compression point has to cause an infinite strain energy. This
incorporates that the total strains in the negative range (compression behavior) converge
to the stress free porosity (tr εtot)− → nSF. Due to the last term this results in

W → +∞ (3.31)

and for the stresses

∂W

∂ε
→ −∞. (3.32)

3. And finally a finite expansion given by (tr εtot)+ → +∞ has to end up in a positively
infinite strain energy function and infinite tension stresses. These requirements are
fulfilled due to the classical linear term, while the additional term ends up with a limited
value. For the strain energy function as well as for the stresses it holds:

W → +∞ (3.33)

∂W

∂ε
→ +∞ (3.34)

4. The used material properties are compatible to the well known material properties λ and
G. For the stress free case, the material matrix given in (3.28) equals the linear elastic
material matrix derived by Hooke‘s law. The bulk modulus K results to

K =
2

3
G + λ. (3.35)

5. The solution of the material model has to be unique, consequently the hydrostatic stress
path has no extremum. It yields

∂2W

∂ε2
6= 0. (3.36)

As all these requirements are fulfilled, the proposed material model seems to be mathemati-
cally correct. Further investigations are done using the material matrix to verify the physical
outcomes.

3.3.4 Review of further physical requirements on the material matrix

As already stated in section 3.3.1 the material model has to fulfill some requirements. Some
of them are already proven by the previous section. In spite of that, a short investigation
concerning the material matrix given by

∂σ

∂ε
=

1

2
λ

(
1 +

n2
SF

(tr εvol + nSF)2

)
1⊗ 1 + 2µI (3.37)

is done in this section. The essential term is the first one, the volumetric term, incorporating
the compression behavior. The evolution of the multiplication factors within the brackets of
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this term is presented in figure 3.5. Within this representation, n2
SF /(tr εvol + nSF )2 is called

the multiplication factor of the compressibility part and the constant value 1 is termed the
multiplication factor of the linear part. The resulting factor is derived by the addition of
both terms and is given by the green solid line in the figure 3.5. As can be seen here, the
proposed model indicates residual porosities in the range of 20% of the stress free porosity
nSF. Although this value depends strongly on the material properties (please refer to section
3.3.5), this approximation is in the physically meaningful range (see section 3.3.5).

Figure 3.5: Multiplication factor of the volumetric term related to tr εvol.

The following requirements were given in section 3.3.1:

1. The valid range should be the range of geometric linear deformations.
This is assured due to the presented derivation of the model.

2. The low stress case should imply a material behavior similar to the behavior of Hooke‘s
material.
This request is fulfilled as it yields

n2
SF

(tr εvol + nSF)2
= 1 (3.38)

for tr εvol = 0. Also figure 3.5 shows that the final multiplication factor, given by the
green solid line equals the linear case for tr εvol = 0.



42 CHAPTER 3. A NON LINEAR ELASTIC COMPRESSIBILITY MODEL

3. The compression should be limited to the compression point. Convergence to this point
should lead to a significant increase of the stresses.
A compression leads to significant compression strains given by negative values of tr εvol

depicted by (tr εvol)−. For

(tr εvol)− → nSF (3.39)

it yields

n2
SF

(tr εvol + nSF)2
→∞ (3.40)

what incorporates the requested significant increase of the material matrix and conse-
quently the stresses.

As a matter of fact, the requirements are fulfilled by the proposed model. But furthermore:
What happens if the material is expanded? An expansion leads to strains pictured by (tr εvol)+.
Consequently it yields

n2
SF

(tr εvol + nSF)2
< 1 (3.41)

and the material behaves softer than before (see figure 3.5). Physically, this is suggestive
but there might be different approaches to handle this range of stresses. Depending on the
exigencies of the physical model, there might be modifications of the proposed term or the
insertion of other (additional) terms. Attention should be laid on the numerical robustness
of the model, which will be imperiled for example by a singularity. For the geotechnical
applications discussed in this work, the presented model is a useful approach.

3.3.5 Validation due to the comparison with experimental data found
in the literature

Within this section various aspects of the proposed model should be validated due to the
comparison with experimental data found in the literature. Here we do not focus on a specific
material, because the general outcomes of the model are valid for various materials. In spite of
that, a closer look on the curve progression indicates significant differences in the compression
behavior of various materials. This will be one major part of the following investigations.

Additionally, an important attribute of the non linear elastic compressibility model is the
residual porosity. As the material can not be compacted until the compression point is reached,
the mathematical model should restrict the compression to this residual porosity, where the
material indicates nearly incompressible behavior. Comparing various experimental data sets,
one finally finds that this residual porosity also depends strongly on the material. As averaged
value, a residual porosity of ≈ 20% of the stress free porosity is supposed in the model. While
this assumption underestimates the behavior of the salt grit presented in figure 3.6 marginally,
it overestimates the data for smectite clays given in figure 3.7.
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Oedometer tests carried out on salt grit of the Asse mine

The magnitude of the stresses is verified comparing the results with experimental data derived
by Oedometer tests. These tests were carried out at the Federal Institute for Geosciences and
Natural Resources (BGR) in Germany, Hannover and published in (Stührenberg, 2004).

The results of the proposed model in comparison with the experimental data is given in figure
3.6. The experimentally determined relationship between the void ratio e and the stress is
given for different compaction velocities. Additionally, the stress as it results from the model
approach depending on the void ratio e is given. The plottet simulation has been carried out
with a stress free porosity assumed to be nSF = 0.35. It can be seen, that the approach of the
non linear elastic compressibility model lies in the same magnitude as the experimental data.
The curve progression as well as the remaining porosity fits the measured values quite good.

Furthermore, the experimental data indicates an influence of the compaction velocity. An
increase of the compaction velocity leads to a damping of the non linear increase of stresses.
As it can be seen, the numerical model fits the measured data very well for the highest and the
lowest void ratio. Within this range, the model nearly pictures the curve derived for the lowest
compaction velocity. This observance fits the physical background very well. The coupling
of the proposed purely mechanical model with the hydraulic subproblem would also lead to
a damping of the process due to the time-dependent pore water pressure. Depending on the
hydraulic properties and the compaction velocity, the behavior found in the simulations will
converge to the experimental data.

Oedometer tests carried out on highly compacted clays

The mechanical compaction of highly compacted clays is investigated in (Mondol, Bjorlykke,
Jahren, & Hoeg, 2007). Within the mentioned publication, the results of this study are com-
pared with various empirical approaches found in the literature (see figure 3.7). Additionally,
a comparison with the curves given by the implemented non linear model (see figure 3.8) is
carried out. Within (Mondol et al., 2007), the effective stresse is assumed to increase 1 MPa
for every 100m saturated depth. Consequently, the range of the stresses found in figure 3.7
lies between 0 and 50MPa, what equals the range found in the previous example.

The experimental data is derived by oedometer tests which were carried out on saturated as
well as on dry kaolinites, smectites and mixtures of both. These clays border the behavior of
other types of clays, as smectite is the most fine-grained clay found in nature and kaolinite
is the most coarse-grained one. Consequently, the kaolinite compacts much more than the
smectite. The experimental results are presented by the black lines given in figure 3.7. They
indicate a high non linear compression behavior in the low-stress area, a moderate nonlinearity
between 2 and 20MPa and a quasi-static state in greater depths. The observed behavior is
assumed to be purely mechanical compaction behavior. It is interpreted as follows:

In the low-stress area, the dry clays initiate a first reorientation and rearrangement of solid
particles. Additionally, the wet clays show rapid volume changes due to an interstitial water
loss before the clay particles come into contact with each other. Within the second stage
between 2 and 20MPa the principle mechanism is particle rearrangement, which leads to a
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Figure 3.6: Relationship of stress and void ratio resulting from oedometer tests carried out on
salt grit of the Asse mine.

closer grain-packing. At higher stresses the experiments indicate only very gradual changes of
the porosity.

Comparing the experimental results (black lines) with various empirical approaches given by
the grey lines in the same figure, two areas can be differentiated. For lower stresses, all empir-
ical approaches show different behavior, but the experimental results lie clearly in the spanned
range. For higher stresses, the empirical approaches indicate lower remaining porosities than
the experimental results. The authors assume this difference to be a consequence of chem-
ical compaction, that takes place in greater depths. This effect is not incorporated in their
experiment.

Figure 3.8 presents the relation between stress and porosity of the proposed non linear model
for various strengths and stress free porosities. The principal curve progression can be modeled.
It depends strongly on the material properties, but all presented curves can be modeled due
to the variation of strength and stress free porosity. Assuming a relatively high strength and a
low stress free porosity leads to the curve, found in the experiments. Nevertheless, the highly
non linear behavior at low stresses under ≈ 2 MPa can not be modeled, as the physical process
pictured here is not part of the model approach. As the geotechnical applications presented
in this work, deal with an at least marginal precompression, this evolution is not of significant
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interest in the given context.

Wetting and drying tests on compacted bentonite-sand mixtures

(Samingan, 2005) investigates the compression behavior of unsaturated, expansive materials
due to suction changes. In this context wetting and drying tests under unconfined conditions
are carried out on several heavily compacted specimens of a 50/50 bentonite-sand mixture.
The influence of the suction on the void ratio is investigated. The results are presented
in figure 3.9 and are similar to the curves given by the proposed non linear compressibility
model. The remaining porosity is found to be ≈ 20% of the stress free, initial porosity and
the curve progression resembles the given curves. As this change of the void ratio is evoked
by a physically completely different process (namely the increase of suction pressure), the
non linear compression behavior seams to be independent from the process at least for these
phenomenological effects.

3.3.6 Final remarks

An approach for a non linear elastic compressibility model for geometric linear problems is
presented. Incorporating the initial state in the model, a difference between the stress free
and the initial porosity is made (section 3.3.1). The derivation of the model is presented and
afterwards the mathematical as well as the physical requirements were investigated. Finally,
the model is verified due to the comparison with experimental data.

Summarizing this chapter, a purely mechanical model is developed to investigate the com-
pression behavior of materials with very low porosities. Within this field of applications, the
model pictures the behavior of a wide range of materials. It is verified for the compression
state between very low negative stresses up to stresses close to the compression point.
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Figure 3.7: Depth versa porosity found in the experiments compared with empirical relations
(please refer to (Mondol, Bjorlykke, J., & K., 2007)).

Figure 3.8: Relation of compression stress and porosity of the non linear elastic compressibility
model for various strength and stress free porosities.
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Figure 3.9: Influence of the suction on the void ratio of highly compacted bentonite-sand
mixtures given in (Samingan, 2005).
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Chapter 4

Elasto-plasticity with respect to clay
modeling

Concerning structural engineering, one normally minimizes the appearance of plastic defor-
mations in order to ensure the integrity of the entire structural system. In contrast to that,
problems in geotechnics often imply plastic deformations that has to be considered in the de-
sign process in order to distinguish hardening from softening processes possibly causing global
failure. Plastic deformations may lead to modifications of the material which affect the vari-
ous coupled processes like mechanical, hydraulic, thermic or chemical effects. Consequently,
accurate numerical simulations and comprehensive coupled models are required ensuring the
coupling of manifold process variables and material properties.

The general idea of the common elasto-plastic material modeling is the partition of the stress
space in two parts with elastic and plastic behavior, respectively. The classification is given
by the so-called yield criterion, which may depend on material properties like the porosity or
the saturation and on the history of loading. In the literature there exist various publications
concerning different yield criteria and kinds of numerical treatment. A short introduction to
this area is given here, for more information please refer to (Davis & Selvadurai, 2002), (de
Boer, 2000), (Desai & Siriwardane, 1984), (Haupt, 2002), (Müllerschön, 2000), (Nackenhorst,
2003), (Panesso, 1998), (Simo & Hughes, 1998) or (Wriggers, 2001) amongst others.

As the history of elasto-plastic material modeling gives a good insight into the problems and
the various extensions of simple plasticity models, this chapter starts with a historical review of
plastic material modeling. Following this more physical reflection, the theoretical background
is given in a generalized form. The chapter finishes by focusing on a plasticity model of the
Cam-Clay type for which the theoretical background as well as the algorithmic formulation are
presented.

4.1 Historical review of plastic material modeling

While there exist manifold publications concerning various types of elasto-plastic material
modeling, a detailed summary on the history of material modeling is given in (de Boer, 2000).

49
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In this work a short introduction is given, as this provides a good insight into the various
effects, which have to be incorporated in such a model. The first investigations concerning
the modeling of plastic effects were done in the area of metal research. Within this context von
Mises (cyclic cylinder) as well as Tresca (hexagonal cylinder) presented a yield surface based
on the derivations of Mohr, given by the well-known Mohr-circle at the end of the nineteenth
century (see figure 4.1). These models imply only one parameter and may be used for brittle
materials with a limitation in tensile stresses.

s
1

s
3

s
2

Figure 4.1: Von Mises plasticity (taken from (Davis & Selvadurai, 2002)).

In the geotechnical context, these material models can only be used for drained conditions
without local increase in water pressure or suction. They are simple and numerically easy to
handle but they do not suit multiphysical problems being addressed here. The most important
shortcoming is that they do not relate the yield criterion on the hydrostatic pressure. To
represent the cohesion of the geologic materials 2-parametric models have to be used which
incorporate a dependence of the shear resistance to the hydrostatic pressure. These were
presented by Drucker-Prager (conical yield surface in the principal stress space, please refer to
(Drucker & Prager, 1952)) and Mohr-Coulomb (hexagonal conical yield surface in the principal
stress space) and are depicted in figure 4.2 and compared in the deviatoric plane in figure 4.3.

These models are still the most widely used elasto-plastic material models. Comparing both,
the Mohr-Coulomb model uses the well-known material parameters friction angle φ and cohe-
sion c and shows a good approximation of many experimental results. But it implies numerical
problems at points of discontinuity. While most of the discontinuities are avoided in the
Drucker-Prager model, the circular shape of this model is contradictory to experimental re-
sults of cohesionless materials. Besides that, this model uses an approximation of the yield
surface prescribed by the material parameters φ and c. Both of the presented models neglect
failure due to hydrostatic loading and imply numerical problems at the tip of the cone. Con-
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Figure 4.2: Mohr-Coulomb (left) and Drucker-Prager plasticity in the principal stress space
(taken from (Davis & Selvadurai, 2002)).

axial compression

axial extension

Mohr-Coulomb

Drucker-Prager

s2
s1

s3

Figure 4.3: Comparison of the Mohr-Coulomb and the Drucker-Prager plasticity in the devia-
toric plane.

cerning these models, the distinction between associative and non-associative flow rules, as it
is explained later, is introduced in numerical plasticity modeling.

Extensions of the proposed 2-parametric models focus on different problems. In (Lade &
Duncan, 1975) and (Matsuoka & Nakai, 1974) smoothed versions of the Mohr-Coulomb
model are presented to avoid the numerical problems while retaining the established shape in
the deviatoric plane. (Steinl, 2000) presents a yield surface with a hyperbolic shape, considering
various compression and tensile strength.

Incorporating failure due to hydrostatic loading has been introduced in plastic material mod-
eling by the so-called cap models namely the various Cambridge Clay Models: The Cam–Clay
model presented in (Roscoe, Schofield, & Wroth, 1958), the Modified Cam–Clay model pre-
sented in (Roscoe & Burland, 1968), the Structured Cam–Clay model presented in (Liu &
Carter, 2002) or the Simple Cyclic Loading Model presented in (Carter, Booker, & Wroth,
1982). The most common models of this type are the Original and the Modified Cam-Clay
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model, which are given in figure 4.4 in the p-q-space, which is introduced in A.6. More infor-
mation on the Cambridge models is given in chapter 4.4 and a general description of a model
of the Cam-Clay type is given in figure 4.5.

Figure 4.4: Original Cam–Clay–Model (left) and modified Cam–Clay–Model (right) in the
p-q-plane (taken from (Desai & Siriwardane, 1984)).

Figure 4.5: Plasticity model of the Cam-Clay type in the principal space (taken from (Desai
& Siriwardane, 1984)).

In some of the plasticity models introduced here the cap is represented by an additional yield
function which might lead to numerical problems at the intersection of both yield surfaces.
Consequently, models with only one yield function has been established. Some of them are
the HISS–Model (Hierarchical Single Surface Model) proposed by (Desai, 1989), the model by
(Kim & Lade, 1988) and the models from (Ehlers, 1995) and (Findeiss, 2000) with their yield
surfaces depicted in figure 4.6. These models avoid the numerical discontinuities but imply a
great variety of material parameters, which are not known in many application cases.
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Figure 4.6: Models with a single yield function proposed by (Ehlers, 1995) and (Findeiß, 2000)
presented in the principal space.

Current investigations concerning plastic material modeling are related to coupled problems.
For example the Barcelona Basic Model (BBM) proposed by (Alonso, Gens, & Josa, 1990) or
(Gens & Alonso, 1992), implies a saturation dependency of the yield function. In 1999 the
same working group (Alonso, Vaunat, & Gens, 1999) suggested a model for the simulation of
the mechanical behavior of expansive clays, called the Barcelona Expansive Model (BExM).
Other approaches were presented by (Chen & Baladi, 1985), (Eekelen, 1980), or (Potts &
Gens, 1984) amongst others.

4.2 Variable yield surfaces

The yield criterion may depend on various effects. The most important one is the hardening
and softening of materials. These processes are incorporated in various plastic models with a
so-called hardening law. Other effects like the influence of the pore space or the saturation
to the yield function are not yet incorporated in standard plasticity modeling. The physical
background of the proposed effects is briefly described in this chapter.

4.2.1 Hardening and softening

Various experiments show the influence of the load history on the material behavior. Besides,
the yield surface depends on the preconsolidation of the material. These effects can be incor-
porated in the plastic model by applying a hardening law. There exist various approaches which
might be classified to isotropic or kinematic hardening as it is explained below. Experimentally,
this phenomenon is called the Bauschinger effect. In contrast to the perfect plastic model,
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shown in figure 4.7, the yield function may alter as it is presented in figure 4.8. Here, the left
side demonstrates the isotropic hardening where the yield function increases due to a plastic
load. In contrast to that, the picture on the right side illustrates the kinematical hardening,
where a plastic load leads to a displacement of the yield surface. For this second case, the
shape and the extent of the yield function remain constant. Typical evolutions of isotropic
hardening and softening behavior occur in simulations of triaxial tests. Related results are
presented in section 6.4.

Figure 4.7: Perfect plasticity.

Figure 4.8: Hardening plasticity with isotropic (left) and kinematic hardening (right).

4.2.2 Dependency of the yield criterion on the pore volume

Various experimental results show the dependency of the yield criterion to the pore volume. It
can easily be understood that a strongly compacted soil with a small porosity incorporates a
larger elastic domain than an unconstrained one with a larger porosity. Up to now, there exist
only few investigations concerning the influence of this physical effect on the plastic behavior.
A model proposed by (nagra-Opalinus, 2002) is defined due to the pore volume e, resulting
from

e =
Vpores

Vsolid

=
Vn

Vs

(4.1)

and is shown in figure 4.9.
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Figure 4.9: Porosity dependent yield function presented by (nagra-Opalinus, 2002). The yield
surface is given in dependency on the void ratio e, the deviatoric stresses q‘ and the medial
effective normal stresses p‘.

4.2.3 Dependency of the yield function on the saturation

Depending on the investigated material, the saturation might have a significant influence on
the plastic behavior. While the incorporation of this effect seems not to be to important for
example for granite, its influence should be tested especially for materials like salt or clay. A
potential approach for this physical effect is given by (Gens, Jouanna, & Schrefler, 2002).

Figure 4.10: Saturation dependent plastic model presented by (Gens, Jouanna, & Schrefler,
2002). The yield surface is given in dependency on the suction s, the deviatoric stresses q and
the medial effective normal stresses p.
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4.3 Theoretical background of elasto-plastic material mod-
eling

This chapter briefly reviews the main points of the theoretical background of plastic material
modeling. For more information please refer to (Lewis & Schrefler, 2000), (Davis & Selvadurai,
2002), (Desai & Siriwardane, 1984), (Wriggers, 2001), (Nackenhorst, 2003), (Zienkiewicz &
Taylor, 2005) or (Borja, Sama, & Sanz, 2003). As explained above, the stress space is divided
in an elastic and a plastic part. Within the numerical procedure, a so-called trial state is
defined, assuming the material to behave in an elastic way, without the appearance of plastic
strains due to this load step. If this trial state ends up with a dissatisfying evaluation of the
yield criterion, a return mapping is accomplished and finally the internal variables are adapted.
Concerning this return mapping, there exist various flow rules, namely the associated and the
non-associated one. For the loading and unloading conditions, the Kuhn-Tucker-conditions
have to be mentioned. These topics will be shortly discussed within the following chapters.

4.3.1 Return mapping

Within the algorithmic formulation of the elasto-plastic model, the initial strains of each time
step are assumed to result from the strains of the old time step and an additional increment
due to the actual load step. Within this approach, the current incremental strain is assumed
to result from a pure elastic behavior. The resulting state is called

”
trial state“ and is not

necessarily equal to a real state. The
”
trial state“ is mathematically given by

εtrial,n+1 = εn + ∆εn+1 λtrial = 0. (4.2)

The relating
”
trial stresses“ result to

σtrial,n+1 = σn + Cel(εel
n , εel

trial,n+1)∆εn+1 (4.3)

where the elastic material tensor C is split in a volumetric and a deviatoric part as follows to

Cel = Cel
vol + Cel

dev. (4.4)

Within this approach, Cel
vol and Cel

dev are given by

Cel
vol = K 1⊗ 1 (4.5)

(4.6)

Cel
dev = 2µ(I− 1

3
1⊗ 1). (4.7)

With this formulation, the elastic constitutive equation

σ = Cel : ε (4.8)

can be reformulated with the hydrostatic pressure p and the deviatoric stresses s to

ptrial
n+1 = pn + K∆εn+1 : 1 (4.9)

strial
n+1 = sn + 2µ∆εdev

n+1 (4.10)
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for the
”
trial state“ . The hardening variables for this state are zero. The strains are given by

an additive decomposition of the elastic and the plastic part

∆ε = ∆εel + ∆εpl. (4.11)

The plastic part of this equation can be derived by the incremental solution of the yield function
for the plastic deformations:

∆εpl = ∆λ
∂G(σn+1,κ)

∂σn+1

(4.12)

with the plastic potential G and the internal variables κ. An associative flow rule is defined
by ∂G/∂σ = ∂F/∂σ and is used in the following. Combining equation (4.3) and equation
(4.12) yields

σn+1 = σtrial
n+1 − Cel : ∆εpl

n+1 (4.13)

= σtrial
n+1 −∆λn+1Cel : εpl

n+1. (4.14)

The return mapping is carried out if the yield function F (σtrial, κ) ≤ 0. It iteratively solves
the system of equations until the final state is reached.

4.3.2 Loading and unloading conditions

The loading and unloading conditions are an additional requirement for the numerical solution
of the elasto-plastic problem. They prove that the stresses are consistently at the yield surface
and enable the appointment of the consistency parameter λ̇ for the evolution equations. In
the mathematical literature they are treated as a well-known optimization problem which is
given by the Kuhn-Tucker conditions

λ̇ ≥ 0 (4.15)

F (σ; κ) ≤ 0 (4.16)

λ̇F (σ; κ) = 0. (4.17)

and the consistency requirement
λ̇Ḟ (σ; κ) = 0. (4.18)

The investigation of these conditions leads to the following possible situations with the elastic
domain given by Eσ

F < 0 ⇔ σ ε Eσ ⇒ λ̇ = 0 − elastic (4.19)

F = 0 ⇔ σ ε ∂Eσ (4.20)

if Ḟ < 0 ⇒ λ̇ = 0 − elastic unloading

if Ḟ = 0 and λ̇ = 0 − neutral loading

if Ḟ = 0 and λ̇ > 0 − plastic loading
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4.4 A plastic model of the Cam-Clay type

One of the most widely used plasticity models for characterizing the stress-strain behavior of
cohesive soils are the various models of the Cam-Clay type. The basics of this type of plasticity
are given in (Roscoe & Burland, 1968). Other related publications are presented by (Potts &
Zdravkovic, 2000), (Schofield & Wroth, 1968) or (Roscoe et al., 1958). The original model has
been modified or extended in various ways as it is presented in (Borja & Kavazanjian, 1985),
(Borja & Lee, 1990), (Panesso, 1998), (Gens et al., 2002), (Simo & Hughes, 1998) or (Ortiz
& Pandolfib, 2004) amongst others. A detailed investigation of the influence of the input
parameters in the context of the structured Cam-Clay model is given in (Liu & Carter, 2002).
The presented models of the Cam-Clay type contain features such as hardening, softening and
pressure sensitivity which are typical for cohesive soils. Additionally they require parameters
which can be directly obtained from conventional laboratory tests. The Cam-Clay parameter
M directly results from the well-known friction angle φ by the following relation:

M =
6 sin φ

3− sin φ
(4.21)

The maximum compression stress applied to the material is given by pc and results directly
from the history of the soil. λVCI and κRCI are usually determined from one-dimensional
consolidation tests.

The Cam-Clay model applied in this work should be used within the context of the finite element
method. Consequently a numerical integration for describing the incremental evolution of the
stresses and the hardening parameters is carried out. The following description of the plastic
model is based on the modified Cam-Clay model described in (Schofield & Wroth, 1968). More
information about the implicit integration algorithm are given in (Borja & Lee, 1990). The
presented model uses the same state boundary surface as yield and plastic potential surface
(associated flow rule). It is described by an ellipses. The hardening rule is related only to
plastic volumetric strains.

4.4.1 Basic equations of the proposed modified Cam-Clay model

The model is described in the p-q-space introduced in appendix A.6, where the volumetric
stresses p and the deviatoric stresses q are defined by

p =
1

3
tr σ (4.22)

q =

√
3

2
‖s‖ (4.23)

where σ is the Cauchy stress tensor and the deviatoric stress tensor s is given by

s = σ − 1

3
tr σ1 (4.24)
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with 1 being the second order identity tensor. The elliptic yield function of the modified
Cam-Clay model is defined by

F =
q2

M2
+ p(p− pc) (4.25)

where M is the slope of the critical state line and pc is the preconsolidation pressure, which
gives the diameter of the ellipsoid in the direction of the p-axis.

Defining the current state of the material, the
”
over consolidation ratio“ OCR is introduced:

OCR =
pc,max

pact

(4.26)

with the maximal pressure within the load history given by pc,max and the current compression
pcurr. The appellation

”
over consolidated“ follows directly from this definition to:

OCR =
pc,max

pcurr

> 1 (4.27)

And accordingly it follows the appellation
”
normally consolidated“:

OCR =
pc,max

pcurr

≤ 1 (4.28)

Additionally, the following hardening law, given here in the rate form, is used

ṗc = ϑpcε̇
pl
vol (4.29)

ε̇pl
vol = tr ε̇pl (4.30)

ϑ =
1 + e

λVCI − κRCI

(4.31)

where ε̇pl
vol is the plastic strain rate tensor, e is the void ratio of the soil mass, λVCI is the virgin

compression index and κRCI is the recompression or swelling index. Both material parameters
are constant and are usually determined by one-dimensional consolidation tests. While λVCI

states the gradient of the
”
Virgo Consolidation Line“ VCL, κRCI is a measure for the gradient

of the reconsolidation line. Both are depicted in figure 4.11. As the state variable e is assumed
to be nearly constant within the context of the presented applications and for small time steps,
the variable ϑ only varies very few within a time step. Consequently, the variables e and ϑ are
treated explicitly, which means that they remain constant over a time interval and ϑ results to

ϑ = ϑn =
1 + en

λVCI − κRCI

. (4.32)

Within this publication an associative flow rule is assumed, defining the plastic flow by

ε̇pl = φ̇
∂F

∂σ
(4.33)
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Figure 4.11: Hardening behavior due to virgo- and reconsolidation.

where φ̇ is the consistency parameter and the derivative of the yield condition can be derived
by a direct application of the chain rule (see (Borja & Kavazanjian, 1985)):

∂F

∂σ
=

∂F

∂p

∂p

∂σ
+

∂F

∂q

∂q

∂σ
=

1

3

∂F

∂p
1 +

√
3

2

∂F

∂q
n̂ (4.34)

where n̂ = s/‖s‖. The derivatives of F , as defined in equation (4.25), with respect to p, q
and pc result to

∂F

∂p
= 2p− pc (4.35)

∂F

∂q
=

2q

M2
(4.36)

∂F

∂pc

= −p. (4.37)

(Borja & Lee, 1990) present two possibilities for the integration of the hardening parameter and
the plastic strains. On the one side an analytical solution, on the other side the employment
of the generalized trapezoidal method with respect to the variable pc. Using the algorithmic
integration over a time increment, one results in the incremental hardening law

pc,n+1 = pc,n exp ϑ∆εpl
vol (4.38)

where pc,n is the preconsolidation pressure of the previous time step and ∆εpl
vol = ∆λ∂F/∂p.

In many classical variations of the Cam-Clay model the elastic moduli K and µ are state
variables given by

K =
1 + e

κRCI

p (4.39)
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and

µ =
3K(1− 2ν)

2(1 + ν)
(4.40)

with the Poisson‘ s ratio ν. This approach is widely used but it is also discussed critical in
current publications. The combination of elastic shear and bulk moduli may lead to a non-
conservative model in which energy may be extracted due to loading cycles. Furthermore, the
complexity of the proposed model in combination with the Cam-Clay theory of plastic behavior
becomes obvious using a fully implicit Newton‘s method. The minor influence combined with a
huge consumption of computer power can make such an approach unattractive for applications.
In spite of the implicit method, an explicit treatment is proposed by (Borja & Lee, 1990) for
the given nonlinearity. This means that

K = Kn =
1 + en

κRCI

pn (4.41)

and

µ = µn =
3Kn(1− 2ν)

2(1 + ν)
. (4.42)

As the impact of this effect turns out to be small in various publications, the plastic model
presented in this work neglects this effect.

4.4.2 Algorithmic formulation of the Cam-Clay model

The procedure for the numerical investigation of the elasto-plastic problem is given by the
following:

1. Start of the time step n+1

As explained above, the procedure for the investigation of the elasto-plastic problem
starts with an elastic so-called

”
trial state“ . The trial stresses are given by

ptrial =
1

3
tr σtrial (4.43)

and

qtrial =

√
3

2
‖strial‖

=

√
3

2
‖sn + 2µ∆εdev

n+1‖ (4.44)
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2. Start of the iteration of ∆λ with the index k

For the iteration of the variable ∆λ this item is the point of return, called

”
START 1“

For further investigations concerning the elasto-plastic behavior, the yield function pa-
rameter F has to be determined by

F =
q2

M2
+ p (p− pc) (4.45)

where

p = ptrial −K∆λ(2p− pc) (4.46)

which can be reformulated to

p =
ptrial + ∆λKpc

1 + 2∆λK
(4.47)

and

q =
qtrial

1 + 6µ ∆λ
M2

(4.48)

pc = pc,ne
[ϑ∆λ(2p−pc)]. (4.49)

For the first iteration, the initial parameters yield

∆λ = 0 (4.50)

and consequently

p = ptrial q = qtrial pc = pc,n. (4.51)

For further iterations:

∆λk+1 = ∆λk − F k

F (́∆λ)k
(4.52)

The derivation of the yield function F to the consistency parameter ∆λ can be deter-
mined applying the chain rule

F (́∆λ) =
∂F

∂p

∂p

∂∆λ
+

∂F

∂q

∂q

∂∆λ
+

∂F

∂pc

∂pc

∂∆λ
(4.53)

which results in

F (́∆λ) = −(2p− pc)

(
K

(2p− pc)

1 + (2K + ϑpc)∆λ

)

− 2q

M2

q

(∆λ + M2

6µ
)
− ϑppc

(2p− pc)

1 + (2K + ϑpc)∆λ
. (4.54)
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The investigation whether the trial state is a real state or if further plastic deformations
have to be investigated is done in the following way:
If:

F < 0 (4.55)

The material behaves purely elastic or the plastic deformations are fit good due to the
existing ∆λ for this time/load step. The final stress state can be calculated using
equations (4.69), (4.70) and (4.71).
If:

F > 0 (4.56)

Plastic deformations take place and are not yet pictured by the assumed ∆λ. It is known
that

∆λ 6= 0 (4.57)

and a return mapping has to be carried out, iterating the variable ∆λ.

3. Start of the iteration of pc with the index j

For the iteration of the variable pc this item is the point of return, called

”
START 2“

Assuming ∆λ 6= 0 the equation

F =
q2

M2
+ p (p− pc) = f(∆λ, ptrial, qtrial, pc) (4.58)

incorporates two unknowns, namely ∆λ and pc. A sub-local Newton iteration is carried
out to derive them.

From the definition of pc given in equation (4.49) by the proposed hardening law and
the derivation of p given in equation (4.47) the parameter G(pc) can be defined by

G(pc) = pc,ne

»
ϑ∆λ

(2ptrial−pc)
(1+2∆λK)

–

− pc (4.59)

= f(pc, ∆λ, ptrial)

≡ 0.

The investigation whether hardening or softening have to be investigated is done in the
following way:
If:

G < 0 (4.60)
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no hardening occurs and

pc = pc,n. (4.61)

If:

G > 0 (4.62)

hardening takes place and

pj+1
c = pj

c −
Gj

G (́pc)j
(4.63)

with

G (́pc) = − ϑ∆λ

1 + 2∆λK
pc,ne

ϑ∆λ 2ptrial−pc
1+2∆λK − 1. (4.64)

Using equation (4.63) the variable pc has to be updated and tested again:

If:

G > 0 (4.65)

The proposed value for pc has to be iterated furthermore. Start a new iteration at

”
START 2“

If:

G < 0 (4.66)

The iteration of pc has finished. The yield function F has to be tested:

If:

F > 0 (4.67)

The proposed value for ∆λ has to be iterated furthermore. Storage of the updated
values of n, ∆λ and pj+1

c and start of a new iteration at

”
START 1“

If:

F < 0 (4.68)

Exit. ∆λ and pc are known and the final values for this time step might be calculated.
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4. Calculation of the final values for p, q, pc, εpl, tr εpl and σ

The final values p, q and pc for this time/load step result in:

p = ptrial −K∆λ(2ptrial − pc) (4.69)

q =
qtrial

1 + 6µ ∆λ
M2

(4.70)

pc = pc,ne
[ϑ∆λ(2ptrial−pc)] (4.71)

The plastic strains εpl can be derived by:

∆εpl
n+1 = ∆λ

∂Fn+1

∂σn+1

(4.72)

with:

∂Fn+1

∂σn+1

=
∂F

∂p

∂p

∂σ
+

∂F

∂q

∂q

∂σ
=

1

3
(2p− pc)1 +

√
3

2

2q

M2
n̂ (4.73)

The trace of the plastic strains tr εpl yields:

trεpl
n+1 = trεpl

n + 3∆λ
1

3
(2p− pc) (4.74)

And the final stresses σ for this time/load step are:

σ = p1 + q

√
2

3
n̂ (4.75)

For a good convergence, the algorithmic consistent tangent modulus has to be used which is
described in section 4.4.3.

4.4.3 Algorithmic consistent elasto-plastic tangent

In order to achieve a quadratic rate of convergence, the algorithmic consistent elasto-plastic
tangent has to be used instead of the continuum elasto-plastic tangent. This can be done
considering the incremental characteristic of the integration algorithm. More information on
this topic can be found in (Wriggers, 1986), (Simo & Taylor, 1985) or (Simo & Hughes, 1998).
The derivation of the algorithmic consistent tangent modulus for the presented model of the
Cam-Clay type is given in (Borja & Lee, 1990) and results to:

CCCM = 2µβ I + [K(a1 + a2 b1)− 1

3
2µβ] 1⊗ 1 (4.76)

+K(a2 b2)1⊗ n + 2µ

√
2

3
a6 b1 n⊗ 1

+2µ(

√
2

3
(a5 + a6 b2)− β)n⊗ n
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with the definitions of I and 1 given in appendix A.2 and A.3 and the variables

β =
‖s‖
‖strial‖ , (4.77)

a1 =
(1 + pc∆λ)

(1 + 2K∆λ + pc∆λ)
, (4.78)

a2 = − (2p− pc)

(1 + 2K∆λ + pc∆λ)
, (4.79)

a3 =
2pc∆λ

(1 + 2K∆λ + pc∆λ)
, (4.80)

a4 =
pc

K

(2p− pc)

(1 + 2K∆λ + pc∆λ)
, (4.81)

a5 =

√
3

2

(
1 +

6µ∆λ

M2

)−1

, (4.82)

a6 = − 3q

M2

(
1 +

6µ∆λ

M2

)−1

, (4.83)

b1 = −K
[(a3 − 2a1) p + a1pc][−2µ 2q

M2 a6 −K (2a2 − a4) p− a2pc

] (4.84)

and

b2 = 2µ
2q

M2

a5[−2µ 2q
M2 a6 −K (2a2 − a4) p− a2pc

] . (4.85)



Chapter 5

Numerical Solution

For the numerical simulation of mechanical and hydraulic problems the finite element method
is state of the art. It is proven to be a very robust and flexible method. Consequently, it is
used for the numerical solution of the proposed problems. A short introduction is given in this
chapter. Afterwards, the relating mathematical treatment as well as the usage of the finite
element method for the derived balance equation are presented for the fully saturated case of
a coupled hydraulic-mechanical problem in an elastic porous medium. Finally, some common
solvers are presented and a short introduction into the FEM code RockFlow is given.

5.1 The Finite Element Method (FEM)

The finite element method is one of the most common numerical methods used for mechanical,
hydraulic and coupled problems in the last years. Compared to other numerical tools, that
approximate the solution of partial differential equations (PDEs), it turns out to be very
useful. As a matter of fact, a great number of publications deal with this topic. Some of
the most important ones are published by (Bathe, 1996), (Belytschko, Liu, & Moran, 2003),
(Hughes, 2000), (Lewis & Schrefler, 2000), (Smith & Griffiths, 2004), (Wriggers, 2001) and
(Zienkiewicz & Taylor, 2005).

5.1.1 Idea and concept

Analytical solutions of geotechnical problems are only known for very limited cases. Due to
the geometrical and physical complexity most of the problems lead to mathematical problems
that have to be handled with numerical tools. For a great variety of engineering problems, the
finite element method turns out to be practicable. Consequently, this method is used within
this publication and the essential steps for the mathematical treatment of the problem are
summarized in the following:

Mathematical description of the physical problem. The physical problem, based on the
balance relations combined with constitutive equations, has to be formulated using the

67
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theory of porous media and the kinematical relations presented in chapter 2.1. Within
this publication the focus is put on geotechnical applications. These lead in most cases
to partial differential equations as they are given for every subproblem in the strong form
of equilibrium in chapter 2.3.

Formulation of the weak form. Combining the partial differential equations with constitu-
tive models presented in chapter 2.4 and reformulating them in the way shown in chapter
5.2 leads to the weak form of the equilibrium.

Discretization of time and space. As the problem is solved element wise within different
time steps, the geometry has to be meshed and the time has to be discretized. This is
shown in chapters 5.1.2 and 5.1.3.

Formulation of the system of equations solved by the FEM. With respect to the cho-
sen field variables (e.g. displacement and pressure), the field equations have to be
interpolated by polynomial shape functions. Additionally, the system has to be assem-
bled to a global algebraic system, incorporating the boundary conditions (Dirichlet type),
which are introduced in section 5.1.4. This procedure is exemplarily shown in chapter
5.3 for the coupled HM-problem.

Solving of the system of equations. Due to various effects, a linear system of equations
may imply nonlinearities. In most of the cases the mathematical problem can be solved
by the combination of linear solvers with one of the nonlinear solvers presented in chapter
5.4.

5.1.2 Spatial discretization

Figure 5.1 shows an arbitrary body B on the left and a possible discretization of the geometry
on the right.

Mathematically, the discretization is given by

B '
ne⋃

e=1

Ωe (5.1)

where the spatial domain B is approximated by ne non overlapping finite elements Ωe. The
weak form of equilibrium is solved element wise before the system of equations is assembled
to a global algebraic system. Within the elements the chosen field variables (in most of the
cases the deformation and the pressure) are approximated by the same shape functions as the
geometry - this is called isoparametric approach (see chapter 5.3).

5.1.3 Temporal discretization

For the temporal discretization, finite difference methods (FDM) are used. The temporal
derivative of the unknown u for the time steps n and n + 1 can be approximated by the
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B
Ωe

Figure 5.1: Discretization of a geometry.

following equation
∂u

∂t
≈ ∆u

∆t
=

un+1 − un

∆t
. (5.2)

For the temporal evaluation of u there exist various methods which are described in detail in
(Bathe, 1996), (Knabner & Angermann, 2003) or (Malcherek, 2001) amongst others. They
are based on a weighting of the time steps given by:

u ≈ Θun+1 + (1−Θ)un 0 ≤ Θ ≤ 1 (5.3)

The common procedures can than shortly be summarized by:

1. Explicit (forward) Euler

Θ = 0 (5.4)

2. Implicit (backward) Euler

Θ = 1 (5.5)

3. Crank-Nicolson (semi-implicit)

Θ = 0.5 (5.6)

Depending on the mathematical problem, the usage of one of these methods might make sense.
While the Explicit Euler method comprises very small computational costs, the time steps have
to be reduced to avoid stability problems (investigation of the Neumann number, see appendix
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A.5). In contrast to that, the time steps may be larger for the solution with an Implicit
Euler method. But this method incorporates higher computational costs. Additionally, it
causes numerical diffusion effects which leads to numerical damping of the computed solution.
The investigation of the local method error indicates that both of these methods comprise
accuracies of the order O(∆t), which means that the solution converges linear to the exact
solution when the time step is reduced. An advantage of the Crank-Nicolson method is
the accuracy of the order O(∆t2), combined with a high stability and unfortunately high
computational costs due to the asymmetry of the system matrix. Within the given framework,
typically the implicit Euler method is used.

5.1.4 Boundary Conditions

The common boundary conditions are called Dirichlet boundary condition and Neumann
boundary condition. Within the Dirichlet boundary condition the value interpolated over
the boundary equals the given value. For example it yields for the unknown u:

u = BCD on ΓD. (5.7)

For example this boundary condition is used for mechanical displacement boundary conditions.

In contrast to that, the Neumann boundary condition declares the gradient of the field variable
over the boundary

∂u = BCN on ΓN . (5.8)

This boundary condition is e.g. used to simulate the fluxes due to a pump or a sheet piling.

5.2 Weak formulation of the coupled problem

Coupled hydraulic-mechanical problems can be divided in single but coupled subproblems. For
each of these problems balance equations have to be fulfilled. Combined with constitutive
equations like material laws a system of equations can be build. Within the finite element
program this system has to be solved by a numerical approach. In this chapter, the derivation
of the set of equations for the coupled hydraulic-mechanical problem is shown exemplarily.
More information about this topic is given in (Zienkiewicz & Taylor, 2005) and (Lewis &
Schrefler, 2000) amongst others.

5.2.1 Mechanical subproblem

The conservation of linear momentum is already presented in section 2.3.2 and states the
equilibrium of inertial stresses and volume and surface loads. Applying the principle of virtual
work for this relation, all constituents are multiplied by an arbitrary virtual displacement δu.
Additional incorporation of the incremental form, introducing the increments of all variables
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given by d(•) leads to the weak form
∫

B

δεT dσtot dv −
∫

B

δuT ρmdb dv −
∫

∂B

δuT dt da = 0. (5.9)

This equation contains the total stresses, which should be replaced by the effective stresses
given in equation (2.82) resulting to

∫

B

δεT dσtot dv =

∫

B

δεT ∂σeff

∂t
dv −

∫

B

δεTm
∂p

∂t
dv (5.10)

in the weak formulation. The additional multiplicators α and χ given in equation (2.85) are
neglected in this chapter. Incorporating this approach in the weak form it results

∫

B

δεT ∂σeff

∂t
dv −

∫

B

δεTm
∂p

∂t
dv −

∫

B

δuT ρmdb dv −
∫

∂B

δuT dt da = 0. (5.11)

The constitutive relation for the material model is already given in equation (2.80). Extended
by an additional term the effect of compressible grains is introduced. In its incremental form
this term yields

dσeff = C(dε− dεp) (5.12)

with the material matrix C and the additional term dεp due to the pore water pressure acting
on the compressible grains given by:

∫

B

δεTC
m

3Ks

∂p

∂t
dv. (5.13)

Combining all these appendages, the mechanical subproblem states
∫

B

δεTC
∂ε

∂t
dv −

∫

B

δεTm
∂p

∂t
dv +

∫

B

δεTC
m

3Ks

∂p

∂t
dv

−
∫

B

δuT ρmdb dv −
∫

∂B

δuT dt da = 0 (5.14)

5.2.2 Hydraulic subproblem

Typically, the hydraulic subproblem is given by the mass balance, containing the fluxes, a stor-
age term due to pressure or saturation modifications and a storage term due to deformations.
This is already presented in section 2.3.1 where the problem is restricted to incompressible
solid grains and a constant fluid density. Writing this in a more general way the mass balance
can be given by

∇ · q + Sp n ρw ∂p

∂t
+ Su ρw Sw ∂ε

∂t
= 0. (5.15)

Within this context, the storage term due to deformations Su is given by

Su = mT − mTC
3Ks

(5.16)
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where the first term incorporates the rate of change of the total volumetric strain and the last
term pictures the deformations of the solid grains.

The storage term due to pressure modifications Sp yields:

Sp =
(1− n)

Ks

+
n

Kf

− 1

(3Ks)2
mTCm (5.17)

with the deformation of the solid grains due to pressure, changes of the fluid density and
deformation of the solid grains due to modifications of the acting stresses.

In addition to the equilibrium condition, the constitutive Darcy´s law given in equation (2.91)
has to be incorporated in the model which results in the following formulation of the mass
balance equation

−∇ ·
(

k krel

η
(∇p− ρwg)

)
+ Su ρw ∂ε

∂t
+ Sp n ρw ∂p

∂t
= 0. (5.18)

Applying the method of weighted residuals by multiplying the mass balance equation by an
arbitrary weight function w yields:

−
∫

B

w∇ ·
(

k krel

η
(∇p− ρwg)

)
dv +

∫

B

wSu ρw ∂ε

∂t
dv +

∫

B

wSp n ρw ∂p

∂t
dv = 0 (5.19)

A partial integration due to the Green‘s Theorem of the first term leads to the hydraulic
subproblem

−
∫

B

(∇w)T

(
k krel

η
(∇p− ρwg)

)
dv +

∫

B

w Su ρw ∂ε

∂t
dv

+

∫

B

wSp n ρw ∂p

∂t
dv +

∫

∂B

w q da = 0. (5.20)

5.3 Usage of the FEM for the coupled problem

For the solution of the derived system of equations, the field variables on the elements, in-
troduced in chapter 5.1.2, are converged by shape functions. Due to the Galerkin approach
the weighting functions of the elements are equal to the ansatz functions of the field vari-
ables. Within the coupled simulation of geotechnical problems the common way is to choose
quadratic ansatz functions for the mechanical problem and linear ansatz functions for the hy-
draulic problem. Considering the coupled hydraulic-mechanical problem the ansatz functions
for the displacement Nu and the pressure Np for every single element are incorporated in the
following way

u = Nu ũ (5.21)

p = Np p̃ (5.22)

w = Np (5.23)
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to approximate the displacement field u, the pressure field p and the weighting function w in
dependency of the values at the nodes given by ũ and p̃. Within this description, Nu and Np

are defined on every node of the given element as follows:

Nu =




Nu

Nv

Nw


 with Nu = Nv = Nw =

[
Nn1

u , Nn2
u , Nn3

u , ...Nnn
u

]

and Np =
[

Nn1
p , Nn2

p , Nn3
p , ...Nnn

p

]
.

The strains result to

ε = B ũ (5.24)

with

B =




Nu,x 0 0

0 Nv,y 0

0 0 Nw,z

Nu,y Nv,x 0

0 Nv,z Nw,y

Nu,z 0 Nw,x




.

5.3.1 Mechanical subproblem

With these definitions for each element, the equilibrium condition for the mechanical subprob-
lem on the domain B, derived in equation (5.14), is given by

∫

B

δũTBTCB dv
dũ

dt
−

∫

B

δũTBTmNp dv
dp̃

dt
+

∫

B

δũTBTC
m

3Ks

Np dv
dp̃

dt

−
∫

B

δũT ρm NT
u

db

dt
dv −

∫

∂B

δũTNT
u

dt

dt
da = 0 (5.25)

with the tensor of the first order Np and the tensor of the second order NT
u . This can be

simplified to

∫

B

BTCB dv
dũ

dt
−

∫

B

BTmNp dv
dp̃

dt
+

∫

B

BTC
m

3Ks

Np dv
dp̃

dt

−
∫

B

ρm NT
u

db

dt
dv −

∫

∂B

NT
u

dt

dt
da = 0 (5.26)

and summarized by

K
dũ

dt
+ L

dp̃

dt
=

df

dt
(5.27)



74 CHAPTER 5. NUMERICAL SOLUTION

with the stiffness matrix

K = −
∫

B

BTCB dv, (5.28)

the coupling term

L =

∫

B

BTmNp dv −
∫

B

BTC
m

3Ks

Np dv (5.29)

where the first term results from the introduction of the effective stresses and the second one
from the observance of the pore pressure on the solid grains; and finally the external loads and
the internal loads due to gravity given by df

dfu =

∫

B

ρm NT
u db dv −

∫

∂B

NT
u dt da. (5.30)

5.3.2 Hydraulic subproblem

Accordingly, the hydraulic subproblem on the domain Ω given by equation (5.20) yields

−
∫

B

(∇Np)T k krel

η
∇Np dv p̃ +

∫

B

(∇Np)T k krel

η
ρwg dv

+

∫

B

Nu
T ρw (mT − mTC

3Ks

)B dv
dũ

dt

+

∫

B

Np
T n ρw

(
(1− n)

Ks

− n

Kf

− 1

(3Ks)2
mTCm

)
Np dv

dp̃

dt

+

∫

∂B

Np
T q da = 0 (5.31)

which can be arranged to

Hp̃ + S
dp̃

dt
+ LTdũ

dt
= fp (5.32)

with the term due to the fluxes in the investigated area

H = −
∫

B

(∇Np)T k krel

η
∇Np dv, (5.33)

the coupling term incorporating variable grain sizes and fluid densities

S =

∫

B

Np
T n ρw

(
(1− n)

Ks

− n

Kf

− 1

(3Ks)2
mTCm

)
Np dv, (5.34)

the coupling term incorporating variations of the total strains and the grain sizes

LT =

∫

B

Nu ρw mBT dv −
∫

B

Nu ρw C
m

3Ks

BT dv, (5.35)

and the term due to gravity and the fluxes over the boundary of the area

fp =

∫

B

(∇Np)T k krel

η
ρwg dv +

∫

∂B

Np
T q da. (5.36)
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5.3.3 Temporal discretization

Finally, the discretization in time has to be carried out for equations (5.27) and (5.32). Solving
this system with an Implicit Euler algorithm, it yields

K∆ũ + Lp̃(n+1) = fu,(n+1) + Lp̃(n) (5.37)

Hp̃(n+1) + S
p̃(n+1)

∆t
+ LT∆ũ

∆t
= fp,(n+1) + S

p̃(n)

∆t
. (5.38)

with the number of time steps n.

5.3.4 Formulation of a coupled hydraulic–mechanical problem for
the numerical solution by the FEM

Summarizing the derivations of the last chapters, the coupled hydraulic-mechanical problem
can be formulated for the solution within a FEM formulation in the following way:

K∆ũ + Lp̃(n+1) = fu,(n+1) + Lp̃(n) (5.39)

Hp̃(n+1) + S
p̃(n+1)

∆t
+ LT∆ũ

∆t
= fp,(n+1) + S

p̃(n)

∆t
(5.40)

With the following definitions

K = Kuu (5.41)

L = Cup (5.42)

LT = Cpu (5.43)

H +
S

∆t
= Kpp (5.44)

fu,(n+1) + Lp̃(n) = Ru (5.45)

fp,(n+1) + S
p̃(n)

∆t
= Rp (5.46)

the system of equations results in

[
K

(n)
uu C

(n)
up

C
(n)
pu K

(n)
pp

][
∆u

(n+1)
(i)

p
(n+1)
(i)

]
=

[
Ru

Rp

]
. (5.47)

This can be simplified with the matrix M, the vector of unknowns x and the right side f to

M(x)x = f (5.48)

and solved numerically by an appropriate solver (please refer to section 5.4).
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5.4 Solver

Common linear solvers like the Biconjugate gradient stabilized method are used for the math-
ematical solution of the problem (please refer to (Feldmann, 2001)). Due to various effects
like coupling or material nonlinearities, the problem becomes nonlinear. As a consequence it
has to be solved by nonlinear solvers, incorporating the incremental solution with the men-
tioned linear solver. There exist various ways to solve the nonlinear mathematical problem in a
numerical way. Usually some kind of fixed-point iterations for finding a numerical approxima-
tion are used for the proposed kind of problems. There convergence can be investigated with
the Banach fixed-point theorem. Some of the developed methods turned out to be robust
with good convergence for the proposed physical problems. For more information please refer
to (Knabner & Angermann, 2003), while a short introduction to the most important solvers
relating geotechnical applications, namely the Newton-Raphson and the Picard iteration, is
given here. Both of them are widely accepted, although both of them have advantages and
disadvantages. While the Newton-Raphson iteration provides fast convergence, it is restricted
to a small convergence radius and consequently the step size is bounded. Besides that, the
adaption of the stiffness matrix for every step is very costly, due to the derivatives within
the formulation (see section 5.4.1). As a consequence the modified Newton-Raphson iter-
ation has been established, where the stiffness matrix is not adapted for every single step.
In contrast to that, the Picard iteration provides a slow convergence combined with a great
convergence radius. Section 5.4.2 and 5.4.1 give a short introduction to the Picard as well as
the Newton-Raphson iteration.

5.4.1 Newton-Raphson iteration

The procedure of the Newton-Raphson iteration is given in various publications, for example
it is presented in detail in (Wriggers, 2001) or (Zienkiewicz & Taylor, 2005). Consequently,
only a short introduction is given here. The fundamental idea of the Newton iteration is the
solvation of a system of equations G using the Taylor series at a given load step n:

G(x(n) + ∆x(n+1)) = G(x(n)) + dG(x(n))∆x(n+1) + r(x(n)) (5.49)

Here the vector r presents higher order terms of the Taylor series and is neglected in the
following. The linearisation dG of G is called tangential matrix and in the following given by
M. Searching for the equilibrium GGn+1 of the system of equations G(x(n) +∆x(n+1)) at the
actual load step n + 1, this leads to:

G(x(n) + ∆x(n+1)) = G(x(n)) + M(x(n))∆x(n+1) (5.50)

where GGn or G(x(n)) and M(x(n)) are known (see figure 5.3). The unknown x(n+1) can be
derived by

xi
(n+1) = xGG

(n) + ∆xi
(n+1) (5.51)

due to the iteration i of the total increment ∆x(n+1). With the residuum

G(x(n) + ∆x(n+1)) = R = f(n+1) −M(xi
(n+1))x

i
(n+1) ≈ 0 (5.52)
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the end of the iterative procedure derives from the comparison with the tolerated error:

‖ R ‖≤ TOL (5.53)

.

Figure 5.2: Procedure of the Newton iteration.

5.4.2 Picard iteration

The solution due to the Picard iteration is also given in various publications e.g. in (Zienkiewicz
& Taylor, 2005). It ist directly evaluated by

G(xi+1
(n+1)) = G(xi

(n+1))−M(xi
(n+1))∆xi

(n) (5.54)

with
G(xi

(n+1)) = fn+1 −M(xi
(n+1))x

i
(n+1) (5.55)

and

M(xi+1
(n+1)) = M(xi

(n+1)) +
∂M(xi

(n+1))

∂xi
(n+1)

xi
(n+1). (5.56)

Neglecting the second term of M(xi+1
(n+1)) and replacing ∆xi

(n) = xi+1
(n+1) − xi

(n+1) one get

G(xi+1
(n+1)) = R = fn+1 −M(xi

(n+1))x
i+1
(n+1) ≈ 0 (5.57)

with the updated value
xi+1

(n+1) = M(xi
(n+1))

−1fn+1. (5.58)

Again, the iterative procedure ends if:

‖ R ‖≤ TOL (5.59)

.
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Figure 5.3: Procedure of the Picard iteration.

5.5 The finite element code RockFlow

The history of the finite element code RockFlow starts in the mid eighties. Within these
years a finite element code for the simulation of flow processes in fractures was developed
at the Institute of Fluid Mechanics and Computer Applications in Civil Engineering (ISEB).
For this purpose various routines were written in Fortran and documented in (Kröhn, 1991)
and (Wollrath, 1990). These developments were extended to a simulator for multiphase flow
problems by (Helmig, 1993) and (Shao, 1994) and supplemented by various mathematical
features. Combined with the turn-over to the program language C the possibility of an adaptive
grid refinement was implemented by (Barlag, 1997) and (Kaiser, 2001) in the nineties. Finally,
the program was able to simulate ground water flow and transport as well as gas and heat
transport, which is documented in (Kolditz, 1996). Afterwards further development focuses
on multiphase flow (please refer to (Thorenz, 2001)) and reactive transport processes (please
refer to (Habbar, 2001)). At the end of the nineties, these enhancements yield to the first
official version of RockFlow.

In the following years it became obvious that in many fields of application various coupled
processes, especially focusing on mechanical aspects have to be investigated. Furthermore, the
features of an object oriented language should be used increasingly in the code. Consequently,
(Kohlmeier, 2006) focuses on coupled thermo–hydro–mechanical effects with a special focus
on the mechanical model using features of the program language C++. At the same time
effort was made to develop a user-friendly program code. As a matter of fact, a Graphical User
Interface (GUI) (please refer to (Kohlmeier, 2006)) was implemented and the documentation
of the code was extended (Wulkau, 2005). These developments as well as the presentation in
the internet support the publicity of the code, which is used by various users like the Federal
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Institute for Geosciences and Natural Resources (BGR) and the (GGA).

Nowadays the code is used within various applications. One example is the project DECO-
VALEX THMC, which started in 2003 and refers to the investigation of coupled processes in
potential host rocks for high radioactive waste disposal (please refer to (Ziefle, Kohlmeier,
Massmann, & Zielke, 2005) and (Massmann, Ziefle, Kohlmeier, & Zielke, 2007)). Claystone
as a potential host rock for the final disposal of radioactive waste is being investigated in
several countries. The Federal Institute for Geosciences and Natural Resources (BGR) is in-
volved in several international projects in clay formations, e.g. the Underground Laboratories
at Mont Terri (Switzerland) and Bure (France). Within this context, RockFlow is enhanced
by various processes and the applicability is proven due to relating simulations. The applica-
tion concerning various geotechnical problems indicates that material properties have to be
treated more in detail. Consequently, actual research, presented in the work at hand, focuses
on non linear material behavior due to compressible material behavior as well as the coupling
between hydraulic and mechanical processes due to changes of material properties and more
complicated material models like hardening plasticity.
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Chapter 6

Applications

6.1 Step-wise compression test

The impact of the non linear elastic compression behavior on the resulting strains and pressure
evolution of a compression test is investigated within this section. A step-wise compression
of an initially unloaded sample is simulated. The process is simulated as a coupled hydraulic-
mechanical problem and consequently every load step leads to a classical consolidation problem
with a time-dependent behavior until the final equilibrium stage is reached. As the consoli-
dation process is a classical example of a coupled hydraulic-mechanical problem, the resulting
deformation and pressure evolution are given in various literature. (Kohlmeier, 2006) uses this
example to present a verification of the linear elastic model implemented in RockFlow due to
the comparison with an analytical solution.

Comparing the linear elastic model with the non linear approach, a relatively high permeability
is chosen, as the focus is laid on the pure mechanical process. Afterwards, the results derived
with a significantly lower permeability are presented, leading to an increase of the water
pressure and a more dominant time-dependent behavior. Concerning this example, the initial
porosity is chosen to be equal to the stress-free porosity. The influence of a preloaded initial
state is investigated in the next section.

6.1.1 Model setup

The soil column given in figure 6.1 is mechanically fixed and impermeable at the sides and at
the bottom. At the top exists a permeable boundary and a time-dependent load is applied.
The load results from a constant value of -125.0 kN/m multiplied with the time dependent
load factor given in figure 6.1. The initial pore water pressure within the whole domain is
assumed to be zero. The material properties are presented in table 6.1.

Additionally, a strain dependent porosity as well as a strain dependent permeability are as-
sumed. The porosity results from equation (2.90) and the current relative permeability de-
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Figure 6.1: Geometry and load factor of the consolidation problem.

Parameter Unit Value

Young‘s modulus E [kPa] 250

Poisson‘s ratio ν [-] 0.2

Initial porosity nIC [-] 0.05

Stress-free porosity nSF [-] 0.05

Simulation with a higher intrinsic permeability k [m2] 5.0· 10−10

Simulation with a lower intrinsic permeability k [m2] 5.0· 10−12

Table 6.1: Material properties for the step-wise compression test.
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pending on the porosity is given by the following linear relationship:

krel,n = 0.5n + 0.5 (6.1)

6.1.2 Results

Every load step leads to a classical consolidation problem. The pressure field and the fluxes
for various time steps within one load step are presented in figure 6.2. The time-dependent
decrease of the pressure field due to the fluid flow can be observed. The last picture shows
the additional increase of pressures due to the next load step.

In the following the temporal evolution of the volumetric strains as well as the pressure evolution
over the column height are investigated. Within this framework, the linear and the non linear
model as well as a higher (k = 5.0 · 10−10m2) and a lower (k = 5.0 · 10−12m2) permeability
are compared.

Linear versus non linear model

Due to the load controlled type of boundary condition at the top, the stresses increase step-wise
with constant step increments. The evolution of strains depends on the type of constitutive
model. In contrast to the constant strain increments arising by the linear elastic model, the non
linear material model presented in chapter 3 leads to step-wise increasing but quantitatively
varying strain increments. The results of both models are given in figure 6.3. The red line in
the figures presents the stress-free porosity, which equals the initial porosity for this example.

Whereas the simulations pictured on the left are performed with the linear elasticity model,
the results of the non linear model are given on the right side. Concerning the strains one
can state that the final strains are bordered by the porosity of the material if the non linear
model is used. Especially if high compressive strains lead to a significant reduction of the pore
space, the results of the non linear model differ significantly from the results derived by the
linear approach. Consequently, the simulation of problems including high compressions up to
the compression point of the material have to be analyzed with the proposed model. As the
compression point depends directly on the stress-free porosity of the material, the non linear
elastic compressibility model is of special interest for materials with low porosities.

An additional effect can be observed investigating the strains. Due to the presented material
model, the material behaves somehow stiffer than in the elastic case already for the initial
case. Consequently, the strain increments are smaller than in the elastic case at the whole
simulation time.

The evolution of the pressure field over the height is given in figure 6.4. At the left side, the
results derived by the linear model are presented, at the right side, the non linear model is
used. The evolution of the water pressure is given over the hight for various time steps within
one load step by the green lines. The red line shows the pressure at one time step after the
next load step. While the figures at the top, present the results for various time steps between
step 50 and 101, the middle concentrates on step 150 to 201 and the bottom on step 450 to
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Figure 6.2: Pressure evolution [kPa] and resulting fluxes in the soil column between step 50
and 101.

501. Concerning the pressure field, it can easily be seen that lower strain increments lead to
lower water pressures. Consequently, the impact of the material model increases significantly
if the compression strains converge to the compression point.
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Figure 6.3: Temporal evolution of the volumetric strains. Left: Linear model. Right: Non
linear model. Top: Higher permeability leads to a low time-dependent impact. Bottom: Lower
permeability leads to a high time-dependency.
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Figure 6.4: Impact of the material model on the pressure evolution at different time steps for
the simulation with the higher permeability. Left: Linear elastic model. Right: Non linear
elastic model. Top: Steps 50 to 101. Middle: Steps 150 to 201. Bottom: Steps 450 to 501.
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Figure 6.5: Pressure evolution over the column height resulting from a higher (left) and a
lower (right) permeability. The pressure field is given for the steps 50 to 101.

Impact of a lower permeability

The influence of the hydraulic process increases if the permeability decreases. Significant
temporal effects can be observed concerning the evolution of strains (see figure 6.3). Conse-
quently, there is no equilibrium stage reached after a time increment of one load step. Besides
that, the final conclusion remains the same. The non linear model has a significant influence
if the pore space is reduced to the compression point by high compression strains.

Concerning the pressure evolution the lower permeability leads to significantly higher water
pressures in the whole area. This can be seen in figure 6.5. As a consequence, the influence of
the mechanical material model is of less importance related to the impact of the permeability.
Anyhow, the pressure field is affected especially if the material converges to the compression
point.
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6.2 Step-wise compression of a preloaded sample

In contrast to the step-wise compression presented in section 6.1, the sample used here is
already preloaded. This means that the initial porosity is not equal to the stress-free porosity
(please refer to chapter 3). The behavior of this sample is investigated with the non linear
elastic compressibility model.

6.2.1 Model setup

The model setup generally equals the setup of the step-wise compression test given in section
6.1. In contrast to the load presented there, the load given in this example results from a
smaller constant value of -12.5 kN/m multiplied with the time dependent load factor given in
the previous section (please refer to figure 6.1). The material properties are presented in table
6.2.

Parameter Unit Value

Young‘s modulus E [kPa] 250

Poisson‘s ratio ν [-] 0.2

Initial porosity nIC [-] 0.05

Stress-free porosity nSF [-] 0.15

Intrinsic permeability k [m2] 5.0· 10−10

Table 6.2: Material properties for the compression test on a preloaded sample.

6.2.2 Results

As the previous example shows, the stiffness of the material depends strongly on the existing
porosity. If the initial porosity differs strongly from the stress-free porosity, the compressibility
obviously decreases. Assuming the stress-free porosity to be 15% and the initial porosity
to be 5% for the proposed consolidation problem, the resulting strains at the top of the
column are given in figure 6.7. To show the influence of the hydraulic-mechanical coupling,
the left side shows the results for a pure mechanical compaction of the material, whereas
the right side presents the strains due to the consolidation problem. It can be seen that
the resulting volumetric strains are relatively small, which results from the preloaded initial
state. An overview of the pore space in the sample is given in figure 6.7 and indicates that
the incompressible state is almost reached at the beginning of the simulation. There is only a
small modification of the volumetric strains due to the increasing load. The remaining porosity
is about 20% of the stress-free porosity. This dimension of the remaining porosity equals the
experimental results given in (Stührenberg, 2004) and (Mondol et al., 2007).
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Figure 6.6: Resulting strains for the purely mechanical (left) and coupled hydraulic-mechanical
(right) case.
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Figure 6.7: Evolution of the pore space due to the compression of the preloaded sample.
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6.3 Foundation problem

The coupled hydraulic-mechanical simulation of a foundation problem with the finite element
code RockFlow has already been presented in (Kohlmeier, 2006). Within that publication the
von Mises as well as the Drucker-Prager plasticity are applied investigating the effect of plas-
ticity focusing on dilatant and contractant behavior under drained and undrained conditions. It
has been pointed out, that especially dilatant and contractant behavior may have a significant
impact on the hydraulic process. Nevertheless, plastic effects due to a compression of the
material can not be evaluated with that kind of models. Consequently, a pressure sensitive
model of the Cam-Clay type has been implemented and is presented in this work. This section
investigates the plastic behavior due to that kind of model. As significant volumetric plastic
strains occur, this kind of model interacts strongly with the fluid flow. The impact on the
hydraulic process, combined with the strain dependent permeability model and compared with
a purely elastic simulation is given in section 6.5.

6.3.1 Model setup

The model domain is assumed to have a width of 12.0m and a hight of 6.0m. It is divided in
1800 quadrilateral elements and pictures Bay Mud, which material properties are presented in
table 6.3.

Parameter Unit Value

Young‘s modulus E [Pa] 1· 109

Poisson‘s ratio ν [-] 0.35

Acceleration due to gravity g [m/s2] 9.81

Cam-Clay parameter M [-] 1.4

Preconsolidation pc [kPa] 10.0

Virgin compression index λV CI [-] 0.37

Recompression index κRCI [-] 0.054

Dry density ρ [kg/m3] 2038.74

Initial porosity n [-] 0.2

Intrinsic Permeability k [m2] 1·10−10

Table 6.3: Material properties for the simulation of the foundation problem.

The left and the right boundary are mechanically fixed in horizontal direction, while the bottom
is fixed vertically. Besides that, the surface is assumed to be permeable while all other bound-
aries are impermeable. The initial water pressure as well as the initial compressive stresses in
the whole domain are assumed to be 10.0 kPa. An initial load of 10.0 kN/m is brought up at
the whole surface. Additional loads shortly were performed beside the fundament to derive an
initial over consolidation. Furthermore, a uniform load is applied in the center of the top over
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a width of 0.60 m simulating a foundation. This load increases until a value of 80.0 kN/m is
reached. This load represents about 95% of the full value of the failure load of Bay Mud. The
difference between the load history in the area of and beside the foundation plate is presented
in figure 6.8. The load history starts with an increase of the overall load for a very short time
period. This leads to a higher initial over consolidation in the near field of the surface area
than in deeper areas. Afterwards, the foundation load is continuously increasing while the load
in the surrounding area is being reduced.

Figure 6.8: Load boundary condition at the top.

2.21
2.12
2.04
1.95
1.86
1.78
1.69
1.60
1.52
1.43
1.35
1.26
1.17
1.09
1.00

OCR [-]

Figure 6.9: Over consolidation ratio (OCR) after 0.1 s.
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6.3.2 Results

The over consolidation ratio (OCR) is given for the 100% load after the first load step (t=0.1 s)
in figure 6.9. The over consolidation ratio represents the current over consolidation of the
soil. It results from the proportion of the maximal to the current pressure distribution. The
presented example incorporates an initial over consolidation at the top, which results directly
from the temporary increase of the load at the whole top (see figure 6.8). Consequently, the
OCR in the near field of the top is significantly higher than in greater depths. This is the
common situation found in many geotechnical applications.
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Figure 6.10: Zone of plastification corresponding to 40%, 60%, 80% and 100% of the full
value of the applied load and distribution of the OCR for the 100% load.

The presented nonlinearly overconsolidated soil is loaded by an additional fundamental load.
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The OCR due to that situation is pictured in figure 6.10 by the red lines presenting contour
lines of the OCR. In the boundary areas, the initial situation has not changed significantly, but
in the center the foundation load leads to higher pressures and consequently a decrease of the
OCR.

Figure 6.10 additionally shows the volumetric plastic strains due to various load steps. It can
be seen, that there exist plastic strains already at 40% of the final load. When the final load,
which equals 95% of the failure load of this soil, is reached, a relatively large area contains
plastic compression strains. As a consequence of the pressure sensitivity, the results differ
significantly from the results obtained by plasticity models without this effect.
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6.4 Hardening and softening behavior found in a triaxial
test

As the triaxial test is one of the most common geotechnical experiments, there exist manifold
data sets of the quantitative behavior of various materials in a triaxial test. Although, the pre-
sented example does not focus on a specific material and consequently there is no comparison
with experimental data. In spite of that, the qualitative evolution of strains and stresses for
various material properties is investigated. Depending on the material, plastic hardening and
softening behavior can be shown.

6.4.1 Model setup

The triaxial test is simulated as a purely mechanical process in a 2-dimensional domain with
a width and a height of 0.05 m. The proposed mesh contains 100 quadrilateral elements. It
is mechanically fixed at the bottom and both sides. At the top, the displacement boundary
condition is applied. This boundary condition provokes a z–displacement of −0.001 m at the
top of the area. Additionally, an initial compression stress of 2.0 Pa is assumed in the whole
domain. The material properties are summarized in table 6.4. The proposed Cam-Clay model
uses the parameter M , which directly results from the friction angle φ of the material:

M =
6 sin φ

(3− sin φ)
(6.2)

Within the simulations the parameter M varies between 1.35 and 2.4, simulating various initial
conditions of the material.

Parameter Unit Value

Young‘s modulus E [Pa] 1· 109

Poisson‘s ratio ν [-] 0.35

Acceleration due to gravity g [m/s2] 9.81

Dry density [kg/m3] 2000

Cam-Clay parameter M [-] 1.35...2.4

Preconsolidation pc [Pa] 2.0

Virgin compression index λV CI [-] 0.5

Recompression index κRCI [-] 0.05

Table 6.4: Material properties for the simulation of the triaxial test.
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6.4.2 Results

The resulting strains and stresses turn out to depend significantly on the condition of the
material. High friction angles φ indicate a high Cam-Clay parameter M and are related
to stable materials. These materials tend to be coarse with variable grain sizes potentially
combined with an optimal water content and a compaction. Compression of this type of
material leads to a hardening and relatively high maximum stresses. In contrast to that,
materials with lower friction angles indicate softening behavior and lower maximum stresses.

Additionally it can be stated that the pure mechanical process is not time- but step-dependent
and that the evolution remains the same for various loads. This will only lead to a change of
the quantitative solution.

Softening material behavior

The results of a triaxial test with a material indicating softening behavior are presented in figure
6.11. The evolution of the deviatoric stresses is given at the top, the appropriate volumetric
strains at the bottom. On the left hand side, the results derived by the finite element simulation
with RockFlow are given. The simulations are carried out with a Cam-Clay parameter M lying
in the range between 1.35 and 1.7, indicating softening.
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Figure 6.11: Euclidic norm of the deviatoric stresses (top) and the plastic strains over the axial
strain (bottom) for different M indicating softening. Left: RockFlow results. Right: Typical
evolution taken from (Davis & Selvadurai, 2002).
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The derived stress- and strain-evolutions are classical results for a compression of a material
in the context of a triaxial test. As a reference, the right side of figure 6.11 presents the
characteristic evolution of strains and stresses for a triaxial test of a softening material taken
from (Davis & Selvadurai, 2002).

Initially, the stresses increase and a compression takes place. Afterwards, a softening of the
material takes place as a consequence of the plastic effects. This leads to a decrease of the
stresses and a final ultimate stress, which is significantly lower than the peak stress. Due to
this decrease of stresses, extension strains arise.

Hardening material behavior

Material with a higher Cam-Clay parameter M indicates a hardening material. Simulations of
a triaxial test for values of M in the range between 1.8 and 2.4 are carried out with the finite
element program. The resulting stress and strain evolutions are presented in figure 6.12 in the
same way as before. It can be seen that there are significant differences in the final deviatoric
stresses as well as in the volumetric strains. While the final ultimate stresses are significantly
higher than before, the resulting extension strains are lower. Comparing both results with
the softening behavior, the history dependency becomes clear, as both types of material show
identical results in the first period of the test.
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Figure 6.12: Euclidic norm of the deviatoric stresses and the plastic strains over the axial strain
for different M indicating hardening.
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6.5 Deformation induced strain dependent permeability

As explained in chapter 2, a strain dependent permeability is implemented in the finite element
code RockFlow. Within this approach, the permeability depends on the current porosity, which
directly depends on the arising volumetric strains. There exist various effects which affect the
volumetric strains of a soil material. On the one side classical mechanical deformation processes
are of special interest, on the other side hydraulic processes like swelling or shrinkage have to
be mentioned in the case of unsaturated materials. Furthermore, the impact of plastic effects
on the volumetric strains is incorporated in the model description.

This example presents the impact of mechanical deformation due to an elastic as well as an
elasto-plastic simulation on the permeability of the material and on the hydraulic process.

6.5.1 Model setup

The impact of a mechanical load on the hydraulic process due to the classical couplings as
well as the strain dependent permeability is investigated here. The fully saturated domain is
assumed to have a width of 10.0 m and a height of 5.0m and is presented in figure 6.13. The
mechanical boundary conditions are stated by a fixed boundary on the bottom and horizontally
fixed conditions at both sides. Initially, a load of 1.0 N/m is applied at the top and the initial
compressive stresses as well as the initial water pressure in the whole domain are assumed to
be 1.0 Pa. An additional load of 1000.0N/m is brought up on a length of 2.0 m in the center
of the top. Within a time interval of 10 sec it increases to the final value. The hydraulic
boundary conditions are given by impermeable boundaries at the top and the bottom and a
pressure gradient given by a pressure of 1000.0 Pa at the left side and a pressure of 1.0 Pa at
the right side. The evaluation of the results is carried out after a time period of 20 sec when
the equilibrium stage is reached.

Figure 6.13: Model setup for the elastic and elasto-plastic deformation example. Left: Hy-
draulic subproblem. Right: Mechanical subproblem.
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The material properties are summarized in table 6.5. The relation between the porosity and
the relative permeability due to the porosity is assumed to be:

krel,n = 97n + 0.1 (6.3)

Parameter Unit Elastic Elasto-plastic

simulation simulation

Young‘s modulus E [kPa] 30.0 30.0

Poisson‘s ratio ν [-] 0.2 0.2

Density ρ [kg/m3] 2000.0 2000.0

Initial porosity nIC [-] 0.05 0.05

Intrinsic permeability k [m2] 1.0· 10−11 1.0· 10−11

Cam-Clay parameter M [-] - 1.5

Preconsolidation pc [Pa] - 1.0

Virgin compression index λV CI [-] - 0.5

Recompression index κRCI [-] - 0.05

Relative permeability due to porosity [-] equ. (6.3) equ. (6.3)

Table 6.5: Material properties for the investigation of the impact of mechanical deformations
on the strain dependent permeability.

6.5.2 Results

The displacements, the water pressure, the fluxes and the compressive volumetric strains due
to the elastic simulation of the proposed example are presented in figure 6.14 by the deformed
mesh, the contour plots and the vector field. The classical deformation in the area of the load
can be observed here. As these compression strains are higher and concentrated on a small
area, their impact has a more significant influence on the fluid flow, than the expansion strains
which arise due to the pressure field. As expected, the deformation becomes asymmetric due
to the pressure field as the water pressure implies an extension of the material. The resulting
volumetric expansion strains depend quantitatively on the value of the water pressure and are
higher on the left than on the right side of the example. Furthermore, the gradient of water
pressure leads to smaller compressive strains due to the foundation plate on the left side than
on the right side. The resulting volumetric strains affect the porosity and consequently the
permeability of the material. The initially homogeneous pressure field and horizontal fluxes are
modified. The resulting fluxes are presented in figure 6.14 on the bottom and indicate only
low fluxes in the near field of the load.

The results for the same problem, simulated with an elasto-plastic material model are given
in figure 6.15. It can be stated that the additional plastic volumetric strains finally lead
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Figure 6.14: Displacements, water pressure, fluxes and compressive volumetric strains derived
by the elastic simulation after 20 s.

to higher volumetric compression strains. The deformations in the near field of the load
are higher than before and the area which is significantly influenced increases. Due to this
area with volumetric compression strains the pressure gradient within this area increases and
consequently decreases in the rest of the domain. As a consequence, the fluxes in great areas
of the domain are lower than in the pure elastic case. In the area where the foundation plate
directly leads to compression behavior, the steeper gradient and the lower permeability are
nearly balanced and the fluxes are similar to the elastic example. Concerning this results, it
has to be kept in mind, that the relation between porosity and relative permeability (given in
equation 6.3) is assumed to be very steep for this example. But finally it can be stated that in
the near field of the load the plastic effect has a significant impact on the mechanical as well
as on the hydraulic process. The rest of the modeled domain is only influenced in a moderate
way.
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Figure 6.15: Displacements, water pressure, fluxes and compressive volumetric strains derived
by the elasto-plastic simulation after 20 s.

As the permeability directly results from the volumetric strains and is the main variable con-
cerning the hydraulic process, the relative permeabilities depending on the porosity for both
cases are also presented in figure 6.16.
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Figure 6.16: Relative permeability due to the porosity resulting from the elasto-plastic model
(top) and the elastic simulation (bottom).
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6.6 Strain dependent permeability due to swelling and
shrinkage

The strain dependent permeability is affected by the mechanical deformation as well as by
swelling and shrinkage effects of the clay material. While section 6.5 investigates the impact
of mechanical deformations on the strain dependent permeability and the hydraulic process,
this section focuses on a saturation dependent permeability.

6.6.1 Model setup

A variation of the saturation leads to volumetric swelling strains and consequently an impact
on the hydraulic process in unsaturated media. This effect is investigated here. The model
domain is assumed to have a width of 12.0 cm and a hight of 6 cm and is presented in figure
6.17 at the bottom. The domain is mechanically fixed at all sides. Furthermore, the initial
saturation is given by 40% and an increase of the saturation up to 50% is applied at a width
of 3.0 cm in the center of the top of the sample.

Figure 6.17: Model setup including the hydraulic (blue) and mechanical (red) subproblem.

The material properties are summarized in table 6.6 and the saturation boundary condition is
given in figure 6.19. The capillary pressure depending on the saturation as well as the relative
permeability depending on the saturation are given in figure 6.18. The relation between the
porosity and the relative permeability due to the porosity are given by:

krel,n = 10n (6.4)
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Figure 6.18: Capillary pressure (left) as well as the relative permeability (right) depending on
the saturation.

Figure 6.19: Saturation boundary condition at the center of the top of the sample.

6.6.2 Results

Within this example all boundaries are fixed. As the increase of the saturation at the top leads
to some kind of swelling primarily in the near field of the fluid inflow, expansive volumetric
strains arise in the whole domain. Consequently the material becomes less permeable especially
in the center of the top. The swelling volumetric strains and the evoked volumetric strains
are presented in figure 6.20 on a deformed mesh (scaling factor: 500). It can be seen, that
the swelling strains are significantly higher than the volumetric strains arising due to the
inhomogeneous stress field.

The updated porosity as well as the updated permeability are directly recalculated applying
the volumetric strains. The resulting relative permeability due to the porosity (please refer to
section 2.4.6) is presented in figure 6.21. The impact on the hydraulic process of a varying
permeability due to swelling and shrinkage in an unsaturated material is already presented in
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Parameter Unit Value

Young‘s modulus E [kPa] 7.0· 106

Poisson‘s ratio ν [-] 0.27

Density ρ [kg/m3] 2542.0

Initial porosity nIC [-] 0.11

Intrinsic permeability k [m2] 1.0· 10−17

Capillary pressure related to saturation [Pa] fig. 6.18

Relative permeability due to saturation [-] fig. 6.18

Relative permeability due to porosity [-] equ. (6.4)

Volumetric swelling coefficient βsw [-] 0.175

Swelling model domain:

Max. water saturation Sw
max [-] 1.0

Min. water saturation Sw
min [-] 0.1

Reference water saturation Sw
0 [-] 0.40

Volumetric reference strain εsw
vol,0 [-] 0.0

Table 6.6: Material properties for the investigation of the impact of swelling and shrinkage on
the strain dependent permeability.

section 6.7.5, especially in figure 6.27.
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Figure 6.20: Initial mesh (top). Swelling volumetric strains (middle) and volumetric strains
(bottom) shown on the deformed mesh.
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Figure 6.21: Resulting relative permeability due to the porosity for the saturation controlled
example.
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6.7 Migration test in a bentonite-sand-mixture (
”
TDR

experiment“)

It is planned to dispose high-level radioactive waste in underground repositories to be erected
in very low permeable bedrock. Salt, clay and granite rock formations are of potential interest
as the form a natural barrier due to their low conductivity. Besides this, an engineered barrier
system (EBS) is planned. The investigation of the permeability of such a system is the aim of
the gas migration test (GMT). This test is accomplished in the Felslabor Grimsel in Switzerland
and comprises several experiments. One of the laboratory experiments is the TDR test which
covers a long-term saturation process in a bentonite-sand mixture which is measured by several
pressure cells and a TDR tube (time domain reflectometry), which causes the name TDR-
test. Originally, this experiment was aimed to validate the TDR-measurements at high water
contents. The measurements (TDR-signal, pressure, water volume and stress) are registrated
since February 2002. Due to the well defined set–up including all boundary conditions and
a comprehensive measuring instrumentation, the results of this experiment can be used to
improve and validate the numerical model. This section presents the application of the finite
element code RockFlow (Version 5) for the simulation of the TDR test. Starting with an
introduction concerning the experimental design, the material properties and the model setup,
the section gives an insight in the impact of various processes and the numerical simulation
of the TDR-test. It finishes with the investigation of potentially higher permeabilities in the
upper part and a summary.

6.7.1 Experimental design

Within the TDR test a cylindrical column of a bentonite-sand-mixture with the percentage
of 20:80 is investigated (see figure 6.22). This soil column is surrounded by an impermeable
and mechanically fixed metallic cylinder and has a height of 88 cm and a diameter of 20 cm.
At the bottom of the bentonite-sand-mixture a layer of gravel is constructed, whereas the top
is bordered by a metal plate with a small tube. The column contains different pressure cells,
which are situated in three different heights. Measured from the top of the gravel they are
located at 13.0 cm, 45.0 cm and 75.0 cm. Another measuring probe, called TDR, is adjusted
in the central axis of the cylinder. The water injection takes place at the bottom of the column
and is increased step-wise over a time period of about 4.5 years.

6.7.2 Model setup

Geometry

Caused by the one-dimensionality of the processes, the cylinder will be simplified to a mesh
with a height of 0.88m and a width of 0.02m. It is divided in 176 quadratic elements with
side-lengths of 0.01 m.
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Figure 6.22: Experimental setup of the TDR test given in (QLR-Labtest, 2005).

Initial conditions

The simulation starts with a uniform saturation of 69% in the whole area. There are no initial
stresses and the gravity constant g is assumed to be negligible.

Boundary conditions

All boundaries are mechanically fixed. The hydraulic boundary conditions are given by im-
permeable boundaries at the left and at the right. The bottom is build by a time-dependent
pressure that initiates a saturation process (see figure 6.23). Special attention has to be paid
to the hydraulic boundary condition at the top. In the experiment, the top of the bentonite-
sand-mixture is covered by a metal plate. This plate contains a small tube, where water can
flow out. Consequently, the numerical model features a closed boundary condition for the first
phase of the experiment, which covers the saturation process and the evolution of a pressure
field. When the pressure at the top comes to a positive range, the boundary condition at the
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top is set to zero. As a matter of fact, the water can flow out.
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Figure 6.23: Pressure boundary condition at the bottom of the cylinder.

Hydraulic-mechanical coupling

The coupling from the hydraulic process to the mechanical problem is driven by some aspects,
prescribed in chapter 2. For unsaturated material there exist high negative pressures especially
at a low saturation level. For this situation the effect represented by Terzaghi‘ s approach
vanishes. A modification of the effective stress law given in 2.4.2 is presented in (Lu & Likos,
2004). It incorporates an additional parameter, the effecive stress coefficient χ as a function
of current and residual degree of water saturation Sw and Sw

r and the constant exponent κ

χ =

(
Sw − Sw

r

1− Sw
r

)κ

. (6.5)

Equation (6.5) modifies to:
σtot = σeff − αχpw1 (6.6)

Various applications presented in (Massmann et al., 2007) indicate that this approach give
reasonable results. The simulations are done with an exponent of κ=2.0.

6.7.3 Material properties

Within the GMT test, many in situ and laboratory tests have been carried out. As most of
the material properties depend on the test conditions like water content, dry density, origin
of the bentonite material and others, the results of these tests are directly related to the
given experiment. Although the interpretation of these data have to be done carefully, some
material properties of the bentonite-sand-mixture are relatively well known. Other values or
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dependencies which are needed for the numerical simulation like the coupling parameters have
to be calibrated. The experiments leading to the material properties used here are published
in various project reports (see for example (Marschall, Fukaya, Croise, Yamamoto, & Mayer,
2001), (Romero, Castellanos, & Alonso, 2003), (Romero, Garcia, & Alonso, 2003), (nagra04-
01, 2004) and (Romero & Castellanos, 2004)).

Hydraulic conductivity and permeability

Various measurements of the hydraulic conductivity for a bentonite-sand mixture with a ratio
of 20:80 are given in the various reports published by nagra. Depending on the experiment,
the results are related to the flow direction, the dry density, the water content, the drainage
and the pressure situation. Due to the summary of the experimental data given in (Marschall
et al., 2001) a hydraulic conductivity of 5.0·10−12 [m/s] is chosen for the simulations. This
conforms to a permeability of 5.0·10−19 [m2].

Capillary pressure versus saturation

The relationship between capillary pressure and saturation has a significant influence on the
saturation process. Relating results are generated within the

”
Kodoka Project: Suction Test on

unsaturated Bentonite/Sand mixture“, which is referred to in (Marschall et al., 2001). Within
this reference there are four measured saturations for given suctions [kgf/cm2]. These are
fittet to a van Genuchten model with van Genuchten α αvG=0.209 [1/kPa], van Genuchten
n nvG=1.094 [-], a residual saturation Sres=0.0 and a maximum saturation Smax=1.0. The
resulting relationship has a very steep gradient and consequently generates very steep satu-
ration fronts. It is shown in 6.24. Mathematically this relationship is given in (SSSAJ1980,
1980) with

pc [Pa] = − 1

α
· 1000 ·

(
S
− 1

m
eff − 1

) 1
n

(6.7)

and

m = 1− 1

n
. (6.8)

The effective saturations result from

Seff =
Sw − Sres

Smax − Sres

. (6.9)

According to this results the report clearly points out that:

’
It should be noted that the fit was made only on the basis of the capillary pressure data
and that no permeability data was available to validate it. Also the values of n given are close
to the limit of validity of the van Genuchten model n>1. These values result in very large
changes of liquid permeability at small values of gas saturation, which is not well supported
by other relative permeability data.‘



6.7. MIGRATION TEST IN A BENTONITE-SAND-MIXTURE (
”
TDR EXPERIMENT“)111

Relative permeability versus saturation

Caused by the lack of data, there are no values given for the relative permeability curve in
(Marschall et al., 2001). Although the difference of the gas permeability in contrast to the
water permeability should be presented by a factor of 1000.

Consequently we assume a relationship given by

krel = S3 (6.10)

which is shown in figure 6.24.
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Figure 6.24: Capillary pressure versus saturation given in (left) and relative permeability versus
saturation (right).

Swelling Model

The linear swelling model which is already presented in chapter 2 is used. The input parameters
are taken from (Marschall et al., 2001) and presented in table 6.7. The swelling coefficient
for the unsaturated case remains 0.016, while the coefficient for the saturated case is given
by 0.029. The TDR-experiment starts with unsaturated conditions and a saturation process.
However, the main part of the experiment is driven in saturated conditions. Consequently we
chose a volumetric swelling coefficient of 0.029.

Summary of material properties for the numerical model

The presented properties are summarized in table 6.7.
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Parameter Unit Value

Dry density assuming 0.11 Wc [g/cm3] 1.869

Initial porosity from dry density [-] 0.296

Hydraulic conductivity [m/s] 9.2·10−13 up to 1.2·10−11

Intrinsic Permeability k [m2] 5·10−19

Capillary pressure versus saturation

van Genuchten αvG [1/kPa] 0.209

van Genuchten nvG - 1.094

Residual saturation Sres - 0.0

Maximal saturation Smax - 1.0

Relative Permeability versus Saturation [-]
krel,w

krel,g
=1000

Linear swelling model

volumetric swelling coefficient βsw - 0.029

max. water saturation Sw
max - 1.0

min. water saturation Sw
min - 0.5

reference water saturation Sw
0 - 0.69

volumetric reference strain εsw
vol,0 - 0.0

Young‘s modulus E [Pa] 50· 106

Poissons ratio ν [-] 0.33

Table 6.7: Material properties for the TDR-test.

6.7.4 Investigating the impact of various processes

The prescribed saturation process is basically initiated by two different processes. On the one
hand a typical saturation process, driven by the capillarity of the material takes place. On the
other hand, the pore water pressure at the bottom of the cylinder has been increased step-wise,
which also initiates a saturation process. Additionally, the influence of swelling and the strain
dependent permeability have to be considered and will be introduced in the following.

Influence of the pressure boundary condition

A comparison of the saturation process in the bentonite-sand-mixture with and without a
pressure boundary condition is given in figure 6.25. Here the pressure evolution over the
height is given for every 3rd month. Due to the steep relation between capillary pressure and
saturation, the saturation front is very steep. Comparing the velocity of the saturation process,
it can be seen, that without any pressure boundary condition defined at the top, the saturation
process is predicted to last more than four years. In contrast to that, the pressure prescription
at the bottom leads to a speed up, which causes a fully saturation of the column after less



6.7. MIGRATION TEST IN A BENTONITE-SAND-MIXTURE (
”
TDR EXPERIMENT“)113

than 2 years. As the pressure evolution also has a significant influence on the effective stresses
in the column, a comparison of the stresses with and without the boundary condition are given
in figure 6.25 at the bottom.

Influence of swelling

The swelling of the material is driven by the saturation and leads to an increase of strains
and stresses in the cylinder. The hydraulic process and consequently the saturation of the
column is not directly affected. A comparison of the stress- and strain-field with and without
swelling are given in figure 6.26, where the total strains, resulting from the elastic strains and
the swelling strains are pictured. On the left hand side, the results without the influence of
swelling are given. The saturation leads to an increase of mass and consequently to an increase
of stresses. During the saturation process, the effect follows up in a non-uniform strain and
stress field, till the equilibrium condition is reached and a linear distribution of strains and
stresses is reached.

The results due to the incorporation of swelling are presented on the right hand side. Qualita-
tively a similar evolution can be seen. Due to the swelling, which results in constant swelling
strains over the height of the column, the process ends up with a stress field with higher
compression and lower tensile stresses.

Influence of the strain dependent permeability

The investigation presented above consider the process of rising water content in a medium
of unchanging pore structure while the hydraulic–mechanical coupling caused by the strain
dependent permeability has not been incorporated yet. Thus, a permeability that depends on
the strains in the column should be assumed as it is introduced in 2. Figure 6.27 shows the
temporal evolutions of the pressure over the height compared with the results without this
effect. It can be seen, that the change of permeability affects the part of the column that
is already saturated. In this area, the permeability decreases and consequently the pressure
increases. The major influence can be seen in the equilibrium case. In the bottom half positive
strains occur (see figure 6.27). This leads to higher permeabilites and consequently a steeper
pressure gradient. In the upper half the process takes place vice versa.

6.7.5 Simulation of the TDR-test

Incorporating all mentioned effects, the resulting pressure evolution is compared with the ex-
perimental data in in figure 6.29. The process at each point starts with a saturation of the
material. Then, the pressure rises and the saturation front climbs the column. Finally, at a
time of 58838400.0 sec or after 22.33 months, the saturation front reaches the top and the
column is fully saturated. At this time, the pressure boundary condition at the top is changed
to an open boundary. The water can flow out and the equilibrium state occurs.
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Figure 6.25: Temporal evolution of the saturation field (every 3rd month) on the top and
the effective stress field on the bottom. Left: Results without a pressure boundary condition;
right: Results with a pressure boundary condition.
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Figure 6.26: Temporal evolution of the stress and strain field with and without swelling of the
material.
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Figure 6.27: Temporal evolution of the pressure over the height (every 3rd month) with
(dashed line) and without (solid line) the impact of the strain dependent permeability.

As can be seen, the simulation fits the measurements in the lower measuring point very well
(red line). The pressures in the upper part of the column are overestimated by the numerical
model. This might be the consequence of effects, which result from the high effective stresses
in the upper part of of the column (see figure 6.26). These might lead to some kind of dam-
age of the material which is not yet incorporated in the simulation (e.g. visco-elasto-plastic
behavior, fracturing). Other effects like a saturation dependent Young‘s modulus or some kind
of fingering are proven and show no significant change of the pressure evolution.

To validate the numerical model, the fluxes at the bottom derived by the measurements are
compared to those of the numerical model. Figure 6.28 shows that the inflow rate is in the
right range, whereas the temporal evolution can not be verified. Furthermore, the measured
fluxes indicate the existence of an equilibrium condition primarily after the last increase of
the pressure boundary condition. In contrast to that, the pressure measurements indicate
equilibrium conditions after a relatively short time period after each step of pressure increase.

Finally, most of the effects, assumed to have an additional impact on the pressure evolution,
result in a change of the pressure field in the whole column. But the simulation results fit the
pressure in the lower part of the model very well. Consequently there might be other reasons,
leading to the overestimation of the pressures in the upper part. Considering the effective
stress field given in figure 6.26, one can assume that the existence of high compressive stresses
might lead to some kind of damage and consequently higher permeabilities in the material.
As the effective stresses in the upper part are higher than in the lower part, this would affect
the upper parts primarily. Additionally, the upper part contains the TDR tube, which might
include some kind of flow paths at the surface of the TDR tube. This kind of flow paths
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Figure 6.28: Comparison of the fluxes derived from the numerical simulation and the mea-
surements.

lead to a higher permeability in these areas, resulting in lower pressures. This effect might
also involve the pressure evolution. Additionally, the upper measurements (green and blue
line) indicate the existence of nearly equilibrium conditions after the stepwise increase of the
boundary condition. In contrast to that, the numerical model as well as the measured fluxes
indicate a time-dependent behavior for a longer period after the increase of the pressure
boundary condition. Assuming damage in the upper part or flow at the TDR surface would
give an explanation of this difference.

6.7.6 Additional effect due to higher permeabilities in the upper part

As we assume some kind of damage (resulting in higher permeabilities in the upper part of the
column) or a flow path at the surface of the TDR tube, another simulation, giving an insight
of the influence of such an effect, is given here. As a first approach, we incorporate two
material groups over the height. The area, which is covered with the TDR tube is assumed
to be more permeable than the rest. Consequently, the first material group reaches from the
bottom to the tip of the tube and indicates a permeability of 5·10−19 m2. The second material
group covers the rest of the column and has a permeability of 1·10−18 m2. All other conditions
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Figure 6.29: Temporal evolution of the pressure within the TDR-test compared with the
measurements.
Top: Classical simulation as it is explained in section 6.7.5.
Bottom: Assuming a change of the permeability due to the TDR tube as it explained in section
6.7.6.
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resemble the classical simulation of the TDR-test as it is presented in section 6.7.5.

The evolution of the pressure over the time is given in figure 6.29 at the bottom. Comparing
the results with the previous ones, the equilibrium pressures in the upper points (green line
and blue line) fit the measurements better than before, while the pressure in the lower part
of the column is marginally lower than before and underestimates the measured data. Besides
that the saturation time is shorter than in the previous simulation. Considering the approach,
all these effects are comprehensive. The lower permeability in the upper part affects the lower
measuring point since the saturation front has reached the area with lower permeabilities. It
leads to a decrease of pressures and faster saturation times. However, assuming the existence
of higher permeabilities in the upper part of the column might explain the existing equilibrium
pressure field. The development of a numerical model which incorporates effects like damage
of the material or some kind of micro-fractures could represent the pressure evolution in
a more detailed way. A problem of a more complicated model like this are the unknown
material properties like permeability of a material with plastic deformations, dimension of
arising fractures, permeability of the fractures and others.

6.7.7 Discussion of the results

Due to the relation of capillary pressure and saturation the saturation front in the bentonite-
sand mixture is relatively steep. Comparing a saturation process caused by capillarity with a
process which additionally incorporates a pressure boundary condition, one can see the signif-
icant influence of the pressure at the bottom to the saturation time and the effective stresses.
The investigation of the influence of swelling indicates, that the swelling leads to higher com-
pressive and lower tensile stresses for the equilibrium stage. A non linear equilibrium pressure
evolution is caused by the incorporation of a stress-dependent permeability.

The resulting pressure evolution fits the measured data quite well. There is a significant
difference of the quality of the numerical results in the three different heights of the column.
While the pressure in the lower measuring point fits the data very well, the results in the
upper part of the column show some differences to the measured data. In contrast to the
pressure measurements, the numerical simulation as well as the measured fluxes indicate a
time-dependent effect after every increase of the pressure boundary condition till the equilib-
rium stage is reached. Finally, the simulated pressures overestimate the measured data.

These differences in the quality of the results indicate some additional effects in the up-
per part of the column. These might be induced by some kind of material damage due to high
compressive stresses or an influence of the TDR tube, which might lead to some horizontal
inhomogeneities. Further developments on the model setup might be a detailed model of the
column, incorporating the TDR tube and possible flow path at their surface. Additionally,
some more aspects of material modeling might be implemented. However, the impact of per-
meability changes as well as coupling parameters or a rough model to incorporate some kind
of fingering due to the pressure boundary condition indicate only moderate influence. First
investigations concerning a saturation dependent Young‘s modulus indicate only minor influ-
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ence. Further developments incorporating the (saturation dependent) elasto-plastic material
behavior, the effect of micro-fracturing or a non linear swelling model might be interesting.



Chapter 7

Conclusion

Within this work hydraulic–mechanical processes in clay materials are investigated numeri-
cally. Focusing on effects in compacted low permeable materials, the physical as well as the
mathematical background and an algorithmic formulation are presented. The implemented
processes are applied to various examples, analyzing the impact of the single processes on the
mechanical and the hydraulic subproblem.

The investigation of coupled hydraulic-mechanical processes is part of current research in
various fields of engineering applications. An important field is the modeling of high-level
radioactive waste disposal, where the behavior of materials with low permeabilities is of special
interest. In the near field of the radioactive waste an engineered barrier system (EBS) is build,
which often contains clay materials like bentonite-sand-mixtures. Concerning the far field,
various host rocks are supposable. Beside granite and salt, claystone is in the focus of current
research. As a consequence the work at hand focuses on processes related to clay materials.
The aim of the presented work is the investigation of specific effects within this kind of
materials and their appraisement in consideration of the presented problem.

Starting point for this work was the existing coupled finite element code RockFlow which
incorporates classical coupling phenomena. The classical coupling of the hydraulic-mechanical
processes takes place in the incorporation of stress-induced strains in the mass balance of the
fluid as well as in the application of Terzaghi‘s effective stresses and the saturation dependent
parameters in the non linear material formulation.

The code is enhanced by algorithmic formulations to simulate effects related to the presented
application field. More precisely the program is extended by additional mechanical effects
and some coupling phenomena, which are of special interest for the simulation of migration
problems in clay materials. The extensions of the finite element program RockFlow are tested
within various applications. As expected, the investigations indicate that the extensions of the
code significantly influence the mechanical behavior. Additionally they have an impact on the
hydraulic process, whereas the significance strongly depends on the specific problem. In the
following, the extensions as well as the related conclusions are shortly summarized.

As presented in chapter 2, clay material incorporates swelling and shrinkage, which is simulated
by a linear swelling model that relates the saturation to some kind of volumetric swelling
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strain. The swelling and shrinkage as well as deformations affect the porosity of the material.
Combining these effects with a strain dependent permeability, the impact on the hydraulic
process can be modeled. Relating applications are presented in sections 6.5 and 6.6. The
introduced strain dependent permeability turned out to be an effective tool to give an insight
into the mechanical impact on the flow process. As it is formulated concise and without any
need of inconvenient material parameters, it is already used in manifold applications.

Assuming the solid grains to be incompressible, the compression of the material is limited due
to the existence of a compression point. As clay materials indicate very low porosities, already
small deformations in the sense of the geometric linear theory lead to non linear elastic material
behavior. The work at hand presents a purely mechanical approach to handle this nonlinearity
in chapter 3. The coupling to the hydraulic process is done by the mentioned classical coupling
phenomena. Typically, the proposed kind of problems contains a preconsolidated initial state,
which significantly influences the constitutive behavior. As a consequence, the definition of a
stress free porosity in contrast to the initial porosity is introduced in the compressibility model.
The difference between stress free and initial porosity as well as the strength of the material
have a significant influence on the evolution of stresses. Comparing the developed approach
with experimental data indicates good agreements for various materials. The range of validity
starts at low compression stresses and goes up to the compression point. The simulation of
a step-wise compression test demonstrates the applicability. Investigations of the difference
to the linear model and the impact of the initial state are presented in sections 6.1 and
6.2. It can be seen, that the non linear elastic compressibility model significantly influences
the mechanical and the hydraulic process if the material is compressed and converges to the
compression point. Additionally, it can be stated that materials with low permeabilities indicate
high pressure gradients. As a consequence, the impact of the non linear compressibility model
on the hydraulic process decreases for low permeable materials in relation to the impact of the
permeabilities.

As it is already mentioned, high compression states arise in the proposed field of applications.
Consequently, a pressure sensitive elasto–plastic material model is of special interest and is
discussed in this work in chapter 4. It is incorporated into the numerical model by imple-
menting a model of the Cam-Clay type, which is able to represent hardening and softening
effects as well as plastic behavior due to a compression of the material. This kind of elasto–
plastic material model needs only few material parameters which can be directly obtained from
conventional laboratory experiments. Various modifications of this model are used in many
scientific publications. Because of the presented strain dependence of the permeability, the
arising plastic strains directly affect the hydraulic process. Various applications of this model
are presented in sections 6.3, 6.4 and 6.5 and point out the hardening and softening behavior
as well as the evolution of plastic strains and their impact onto the hydraulic process. But
finally, the simulation of a coupled hydraulic-mechanical problem including elasto–plastic ma-
terial behavior leads to an increase of the complexity of the model. Consequently, the impact
on the results has to be thoroughly weighted. Further developments concerning the influence
of the saturation and the pore space on the yield function might be of special interest within
this field of application.

Other topics of future research arise directly from the processes presented in chapter 1, figure
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1.1. They appear in the field of fracture mechanics as well as visco-elasto-plastic material
behavior. Besides that, further developments focusing on geometrically non linear behavior,
chemical effects including phase changes (non-isothermal multiphase flow) or reactive transport
processes might be topics of future research.
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Appendix A

Basic notations and definitions

A.1 Voigt Notation

The Voigt notation is a way to represent a symmetric tensor by reducing its order. The original
presentation of e.g. the strains for the three dimensional case remains:

ε =




εxx εxy εxz

εyx εyy εyz

εzx εzy εzz


 . (A.1)

Reducing this in the sense of the Voigt notation leads to the following depiction:

εT =
(

εxx εyy εzz εxy εyz εxz

)
. (A.2)

A.2 Definition of the fourth order identity tensor I

The identity tensor of the fourth order is denoted as I and given by

I =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0.5 0 0

0 0 0 0 0.5 0

0 0 0 0 0 0.5




. (A.3)
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A.3 Definition of the second order identity tensor 1

The second order identity tensor is referred to as 1 and yields




1 0 0

0 1 0

0 0 1


 . (A.4)

Applying the Voigt notation yields

1 =
(

1 1 1 0 0 0
)T

= mT . (A.5)

Therefore, it follows:

1⊗ 1 =




1

1

1

0

0

0




⊗




1

1

1

0

0

0




=




1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




. (A.6)

A.4 Euclidic norm

Within chapter 2 the vector norm ‖ • ‖ is used. This norm is also called Euclidic norm or
L2-norm. It is applied for vectors and can be interpreted as a measure for the natural length
of this vector. Concerning the vector x this norm yields:

‖ • ‖ =

√√√√
n∑

i=1

|xi|2 (A.7)

Other common norms are e.g. the L1-norm or the maximum norm.

A.5 Neumann number

Within section 5.1.3 the Neumann number is introduced as a measure to ensure the stability
of a numerical solution procedure. Due to the Neumann number Ne, the algorithm is stable if

Ne =
D∆t

∆x2
≤ 0.5 (A.8)

with the factor D.
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A.6 Definition of the p-q-plane in the principal stress
space

A common way to picture the yield function of a plastic material model is the presentation of
the yield function in the p-q-plane. Within this description, p gives the hydrostatic axis where
the mean stress occurs and q represents the axis of the deviatoric stresses. Figure A.1 gives a
presentation of the p- and the q-axis in the principal stress space.

deviatoric
(

plane
π-plane)

meridian plane
(p-q-plane)

deviatoric
axis

hydrostatic plane
( experiments)ε ε2 3= →

hydrostatic axis
q

p

σ2

σ3

σ1

Figure A.1: Basic definitions of stress spaces.

Within this approach the radial distance from the space diagonal to an arbitrary stress point

is given by
√

2
3
q, as it is more precisely derivated in (Davis & Selvadurai, 2002).

A.7 The Euclidean space

Euclidean space Around 300 before christ, the Greek mathematician Euclid laid down the
rules of what has now come to be called

”
Euclidean geometry“, which is the study of

the relationships between angles and distances in space. Euclid first developed
”
plane

geometry“ which dealt with the geometry of two-dimensional objects on a flat surface.
He then went on to develop

”
solid geometry“ which analyzed the geometry of three-

dimensional objects. All of the axioms of Euclid have been encoded into an abstract
mathematical space known as a two- or three-dimensional Euclidean Space. These
mathematical spaces may be extended to apply to any dimension, and such a space is
called an n-dimensional Euclidean space or an n-space. (taken from Wikipedia.de)
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A.8 The Lebesgue integral

The Riemann integral is defined as the sum of the surface area of a series of step functions.
In contrast to the Riemann integral, the Lebesgue integral is defined as the sum of a series of
horizontal domains, converging to the integral of a function.

Figure A.2: Illustration of a Riemann integral (top) and a Lebesgue integral (bottom) (taken
from Wikipedia.de)
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Anwendung auf die Bewässerung) Sitzungsberichte der Akademie der Wissenschaften
in Wien, mathematisch-naturwissenschaftliche Klasse(136), 271-309. (Abteilung IIa)



132 BIBLIOGRAPHY
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tronisches Rechnen im Bauwesen, Universität Hannover. (PhD thesis)

Wriggers, P. (1986). Konsistente Linearisierungen in der Kontinuumsmechanik und ihre
Anwendung auf die Finite-Elemente-Methode. Institut für Baumechanik und Numerische
Mechanik, Leibniz Universität Hannover. (Habilitationsschrift)

Wriggers, P. (2001). Nichtlineare Finite-Elemente-Methoden. Springer.

Wulkau, M. (2005). Entwicklung einer Struktur- und Datenverwaltung zur objektorientierten
Umsetzung eines flexiblen Konzepts der Dateneingabe im FE-Programm RockFlow. In-
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Numerische Untersuchungen am Beispiel der Unterelbe. Dissertation,
Univ. Hannover, 1984

16/1985 Perko, H.-D. Gasausscheidung in instationärer Rohrströmung. Dis-
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anwendungen auf Strömungsprobleme in Tidegebieten. Dissertation,
Univ. Hannover, 1985

20/1985 Vera Muthre, C. Untersuchungen zur Salzausbreitung in Ästuarien
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dito * Schröter, A. Das numerische Seegangsmodell BOWAM2 1990 –
Grundlagen und Verifikationen – . Univ. Hannover, 1991

32/1992 Leister, K. Anwendung numerischer Flachwassermodelle zur Bestim-
mung von Wasserlinien. Dissertation, Univ. Hannover, 1992

33/1993 Ramthun, B. Zur Druckstoßsicherung von Fernwärmenetzen und zur
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nieurwesen. Dissertation, Univ. Hannover, 1994

41/1994 Benali, H. Zur Kopplung von FEM– und CAD–Programmen im Bau-
wesen über neutrale Datenschnittstellen. Dissertation, Univ. Hannover,
1994
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oberflächenbelüfteten Belebungsbecken. Dissertation, Univ. Hannover,
1996
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